5/14 <9/35
2 (целое) 1/3 < 2(целое) 7/9
Пошаговое объяснение:
Не забывайте оценить, нажать и не забывайте нажмить кнопку ПОДПИСАТЬСЯ꧁♕꧂
ответ:ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
Используя формулу n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 — первый член геометрической прогрессии, q — знаменатель геометрической прогрессии, получаем следующие соотношения:
b1 + b1 * q = 75;
b1 * q + b1 * q² = 150.
Решаем полученную систему уравнений.
Разделив второе уравнение на первое, получаем:
(b1 * q + b1 * q²) / (b1 + b1 * q ) = 150 / 75;
(q + q²) / (1 + q ) = 2;
q * (1 + q) / (1 + q ) = 2;
q = 2.
Подставляя найденное значение q = 2 в уравнение b1 + b1 * q = 75 , получаем:
b1 + b1 * 2 = 75;
3 * b1 = 75;
b1 = 75 / 3;
b1 = 25.
Находим второй и третий члены прогрессии:
b2 = b1 * q = 25 * 2 = 50;
b3 = b2 * q = 50 * 2 = 100.
ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
ответ:ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
Используя формулу n-го члена геометрической прогрессии bn = b1 * qn - 1, где b1 — первый член геометрической прогрессии, q — знаменатель геометрической прогрессии, получаем следующие соотношения:
b1 + b1 * q = 75;
b1 * q + b1 * q² = 150.
Решаем полученную систему уравнений.
Разделив второе уравнение на первое, получаем:
(b1 * q + b1 * q²) / (b1 + b1 * q ) = 150 / 75;
(q + q²) / (1 + q ) = 2;
q * (1 + q) / (1 + q ) = 2;
q = 2.
Подставляя найденное значение q = 2 в уравнение b1 + b1 * q = 75 , получаем:
b1 + b1 * 2 = 75;
3 * b1 = 75;
b1 = 75 / 3;
b1 = 25.
Находим второй и третий члены прогрессии:
b2 = b1 * q = 25 * 2 = 50;
b3 = b2 * q = 50 * 2 = 100.
ответ: первые три члена данной прогрессии равны соответственно 25, 50 и 100
Пошаговое объяснение:
Чтобы сравнить пары чисел, нужно их привести к общему знаменателю
5/14 > 9/35
5\14=25\70
9\35=18\70
2 1/3 < 2 7/9
2 1\3=2 3\9
2 7\9=2 7\9