М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
YTTeamGardnYT
YTTeamGardnYT
28.11.2020 11:53 •  Математика

Очень трудная задача объясните ​


Очень трудная задача объясните ​

👇
Ответ:
pennycat
pennycat
28.11.2020

177 кусков и 3 см провода осталось

Пошаговое объяснение:

160×100=16000

16000/90=177

4,6(7 оценок)
Ответ:
MEGRAD
MEGRAD
28.11.2020

177 кусочков и осталось 0,777 см

Пошаговое объяснение:

Переводим сначала всё в одну единицу 160м *100=16000 см

Теперь всю длину делим на длина ОДНОГО кусочка

16000 см / 90 см = 177,777777 - это 177 кусочков и осталось 0,777 см

4,4(35 оценок)
Открыть все ответы
Ответ:
AngelinaMon1
AngelinaMon1
28.11.2020
Патриот — тот, кто любит свое отечество, предан своему народу, готов на жертвы и подвиги во имя интересов своей Родины. Так трактует это понятие толковый словарь. Что же мы сегодня понимаем под этим словом? Попробуем разобраться…

То, каким вырастает человек, напрямую зависит от воспитания, которое он получил. Чувства любви к Родине, патриотизма во мне воспитали классически. Они не расходятся с определением словаря. В классическом смысле слово никогда не меняло своего значения. В войне против Наполеона патриоты погибали за Россию, в Великой Отечественной войне погибли миллионы патриотов… Они все были готовы на подвиг ради родной земли…
4,4(89 оценок)
Ответ:
mrrur99
mrrur99
28.11.2020
log_{5^3}(9)= \frac{ln(9)}{ln(5^3)} = \frac{ln(9)}{3ln(5)} ;log_5(9)= \frac{ln(9)}{ln(5)}
Поэтому \frac{log_{5^3}(9)}{log_5(9)} = \frac{1}{3}
Получаем
\frac{ln(9y^2-3y+1)}{ln(8y^2-6y+1)^3} \leq \frac{1}{3}
\frac{ln(9y^2-3y+1)}{3ln(8y^2-6y+1)} \leq \frac{1}{3}
\frac{ln(9y^2-3y+1)}{ln(8y^2-6y+1)} \leq1
\frac{ln(9y^2-3y+1)}{ln(8y^2-6y+1)}-1 \leq0
\frac{ln(9y^2-3y+1)-ln(8y^2-6y+1)}{ln(8y^2-6y+1)} \leq0
Если дробь <= 0, то числитель и знаменатель имеют разные знаки.

1) Числитель отрицательный.
{ ln(9y^2-3y+1)-ln(8y^2-6y+1) <= 0
{ ln(8y^2-6y+1) > 0
Разность логарифмов - это логарифм дроби
ln \frac{9y^2-3y+1}{8y^2-6y+1} \leq 0
ln(8y^2-6y+1) \ \textgreater \ 0
0 = ln(1). Избавляемся от логарифмов.
\frac{9y^2-3y+1}{8y^2-6y+1} \leq 1
8y^2-6y+1\ \textgreater \ 1
Преобразуем так, чтобы справа были 0
\frac{9y^2-3y+1-(8y^2-6y+1)}{8y^2-6y+1} \leq0
8y^2-6y\ \textgreater \ 0
Упрощаем
\frac{y^2+3y}{8y^2-6y+1} \leq0
{ 2y(4y - 3) > 0
Разложим на множители
\frac{y(y+3)}{(2y-1)(4y-1)} \leq 0
{ 2y(4y - 3) > 0
По методу интервалов
{ y ∈ [-3; 0] U (1/4; 1/2)
{ y ∈ (-oo; 0) U (3/4; +oo)
Результат: y ∈ [-3; 0)

2) Числитель положительный
{ ln(9y^2-3y+1)-ln(8y^2-6y+1) >= 0
{ ln(8y^2-6y+1) < 0
Разность логарифмов - это логарифм дроби
ln \frac{9y^2-3y+1}{8y^2-6y+1} \geq 0
ln(8y^2-6y+1) \ \textless \ 0
0 = ln(1). Избавляемся от логарифмов.
\frac{9y^2-3y+1}{8y^2-6y+1} \geq 1
8y^2-6y+1 \ \textless \ 1
Преобразуем так, чтобы справа были 0
\frac{9y^2-3y+1-(8y^2-6y+1)}{8y^2-6y+1} \geq 0
8y^2-6y\ \textless \ 0
Упрощаем
\frac{y^2+3y}{8y^2-6y+1} \geq 0
{ 2y(4y - 3) < 0
Разложим на множители
\frac{y(y+3)}{(2y-1)(4y-1)} \geq 0
{ 2y(4y - 3) < 0
По методу интервалов
{ y ∈ (-oo; -3] U [0; 1/4) U (1/2; +oo)
{ y ∈ (0; 3/4)
Результат: y ∈ (0; 1/4) U (1/2; 3/4)

ответ: y ∈ [-3; 0) U (0; 1/4) U (1/2; 3/4)
4,8(35 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ