Пусть искомые двузначные числа А имеют следующую запись ='ab' = 10a+b где а - число десятков, b -число единиц. b больше 1 в b раз ( т.к b/1=b) значит: 'ab'/b=b 'ab'=b^2 10a+b=b^2 b^2-b-10a=0 D=1+40a b1=(1+sqrt(1+40a))/2 b2 =(1-sqrt(1+40a))/2 - не подходит, т.к. выражение меньше 0, а число единиц отрицательным быть не может (т.к. sqrt(1+40a)>1 при всех а от 0 до 9) Значит: b=(1+sqrt(1+40a))/2 т.к. b -целое (по определению), то: (1+sqrt(1+40a))/2 - тоже целое, тогда 1+sqrt(1+40a) - целое, кратное 2, значит sqrt(1+40a) - целое, значит 1+40a -полный квадрат: 1+40а является полным квадратом, только при а =2;3;9 1)a=2; b=(1+sqrt(81))/2=(1+9)/2=5 'ab'=25 2)a=3; b=(1+sqrt(121))/2=(1+11)/2=6 'ab'=36 3)a=9; b=(1+sqrt(361))/2=20/2=10 -не подходит, т.к. 0≤b≤9 ответ: 25, 36
(Х) км/ч-время на первой части пути; (Х+15) км/ч - время на второй части пути; (24/х) ч-скорость на первой части пути; (36/(x+15)) ч - скорость на второй части пути; 4 км/ч - разница между первой и второй скоростью Составляем и решаем уравнение: 36/(x+15)-24/x=4 Находим общий знаменатель, подписываем дополнительные множители, приводим к квадратному. (-4x^2-24x+384=0) Находим корни уравнения: x1=6; x2=-16 (не удовлетворяет условию) х-время на первой части пути, значит, время на первой части пути = 6 ч. Находим скорость: 24/6=4 ответ: 4 км/ч
1246
Пошаговое объяснение: