Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции. Введение Править
Обозначим множество чисел X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной ( x ¯ {\bar {x}}, произносится «x с чертой»).
Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.
На практике разница между μ и x ¯ {\bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда x ¯ {\bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).
Обе эти величины вычисляются одним и тем же
x ¯ = 1 n ∑ i = 1 n x i = 1 n ( x 1 + ⋯ + x n ) . {\bar {x}}={\frac {1}{n}}\sum _{{i=1}}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}). Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.
В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.
Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).
Примеры Править Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3: x 1 + x 2 + x 3 3 . {\frac {x_{1}+x_{2}+x_{3}}{3}}. Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4: x 1 + x 2 + x 3 + x 4 4 . {\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}. Непрерывная случайная величина Править Если существует интеграл от некоторой функции f ( x ) f(x) одной переменной, то среднее арифметическое этой функции на отрезке [ a ; b ] [a;b] определяется через определённый интеграл:
f ( x ) ¯ [ a ; b ] = 1 b − a ∫ a b f ( x ) d x . {\displaystyle {\overline {f(x)}}_{[a;b]}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx.} Здесь подразумевается, что b > a . {\displaystyle b>a.}
Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].
Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).
При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины. Направления Править Основная статья: Статистика направлений При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно 1 ∘ + 359 ∘ 2 = {\frac {1^{\circ }+359^{\circ }}{2}}=180°. Это число неверно по двум причинам.
Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться: 1 ∘ + ( − 1 ∘ ) 2 = 0 ∘ {\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ }, 1 ∘ + 719 ∘ 2 = 360 ∘ {\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }. Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значением, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните: число 1° отклоняется от 0° всего на 1°; число 1° отклоняется от вычисленного среднего, равного 180°, на 179°. Среднее значение для циклической переменной, рассчитанное .
{2(x-2y)=x-8y
{5(x+y)=2(x-y)+10
{2x-4y=x-8y
{5x+5y=2x-2y+10
{2x-4y-x+8y=0
{5x+5y-2x+2y=10
{x+4y=0|*3
{3x+7y=10
-{3x+12y=0
-{3x+7y=10
5y=10|:5
y=2
3x+12*2=0
3x=-24|:3
x=-8
{3(x+4y)-4x=2(2x+y)
{7(x-5y)+6x=3(x+4y)+27
{3x+12y-4x=4x+2y
{7x-35y+6x=3x+12y+27
{-x+12y-4x-2y=0
{13x-35y-3x-12y=27
{-5x+10y=0|*2
{10x-47y=27
+{-10x+20y=0
+{10x-47y=27
-27y=27|:(-27)
y=-1
-10x-1*20=0
-10x=20|:(-10)
x=-2
{15+2(x+3y)=3(4x+y)
{2(5x-y)-3y=2+3(2x-y)
{15+2x+6y=12x+3y
{10x-2y-3y=2+6x-3y
{2x+6y-12x-3y=-15
{10x-5y-6x+3y=2
{-10x+3y=-15|*2
{4x-2y=2|*3
+{-20x+6y=-30
+{12x-6y=6
-8x=-24|:(-8)
x=3
12*3-6y=6
-6y=6-36
-6y=-30|:(-6)
y=5
{5(7x+2y)-11y=6(2x+y)+2 {33+3(6x-5y)=3(x+2y)-5y
{35x+10y-11y=12x+6y+2
{33+18x-15y=3x+6y-5y
{35x-y-12x-6y=2
{18x-15y-3x-6y+5y=-33
{23x-7y=2|*16
{15x-16y=-33|*7
-{368x-112y=32
-{105x-112y=-231
263x=263|:263
x=1
15*1-16y=-33
-16y=-33-15
-16y=-48|:(-16)
y=3