1685. еайдите градусные меры углов треугольника mnk ,если угол m меньше угла n на 40* и больше угла k на 10*. 1686. найдите градусные меры углов треугольника cde , если угол c вдвое больше угла, d и в трое меньше угла e.
Есть 2 варианта ответа. 1) Оставить ответ такой, какой получился. Ведь переменная х - это угол. А arc sin(1/3) и есть угол. Чтобы определить значение х в заданном промежутке, надо их приравнять. 1 ответ: х = πk: πk = -π k = -1 x = -π. πk = 3π/2 k = 3/2 Целое значение k = 1. Есть ещё 2 значения к между ними: к =0 х = 0, к = 1 х = π. 2 ответ: x = arc sin(1/3) + 2πk: Так как угол arc sin(1/3) больше 0 и меньше π/2, то заданный промежуток можно выразить так: левый предел:-π - 2πk < π/2, сократим на π: -1 - 2k < 1/2, 2k > -1 - (1/2) , k > -3/4. То есть ближайшее целое значение к = 0, правый предел: 3π/2 - 2πk < π/2, 3/2 - 2k < 1/2, 2k > (3/2) - (1/2) = 2/2 = 1, k > 1/2. Если принять значение k = 1, то тогда корень равен x = arc sin(1/3) + 2π, что больше 3π/2. Значит, k = 0. Корень равен: x = arc sin(1/3).
3 ответ: x = π - arc sin(1/3) + 2πk (именно минус после π). -π = arc sin(1/3) + 2πk, -π - 2πk < π/2, -1 - 2k < 1/2, 2k > -1 -(1/2), 2k >-3/2, k > -3/4. То есть ближайшее целое значение к = 0. Корень равен: x = π - arc sin(1/3).
Итого 5 значений: 1) х = -π; 2) х = 0; 3) х = arc sin(1/3); 4) x = π - arc sin(1/3); 5) x = π.
2) Можно выразить в цифровом виде, найдя arc sin(1/3) в радианах: arc sin(1/3) = 0.339837 радиан. В заданном промежутке 5 значений х: 1) х = - 3,141593; 2) х = 0; 3) х = 0,339837; 4) х = 2,801756; 5) х = 3,141593.
х- угол М, х+40- угол N, х-10- угол К
х+х+40+х-10=180
3х=180+10-40
3х=150
х=150/3
х=50
50 градусов- угол М, 50+40=90 градусов- угол N, 50-10=40 градусов- угол К
1686.
х- угол С, х/2- угол Д, 3х- угол Е
х+х/2+3х=180
4х+х/2=180
9х/2=180
9х=180*2
9х=360
х=360/9
х=40
40 град- угол С, 40/2=20 град- угол Д, 40х3=120 град угол Е