Задание: произвести расчет каждой стены ( если есть дверь и окно необходимо вычесть); по общему результату обрабатываемой поверхности произвести расчет А=3м, Д= 9м, Ш=3м, (высота 2,5м), Основит, толщина слоя 1см.
Таких трехзначных чисел всего 6 Причем по десяткам они встречаются по 2 раза всего их 6. Тогда если сложить все числа и отдельно по разрядам получим. S=2*(k+l+m)*100+2*(k+l+m)*10+2(k+l+m)=(k+l+m)*(200+20+2)=222*(k+l+m) 2700<222(k+l+m)<2900 То есть сумма делится на 222 между числами 2700 и 2900 есть только 1 число делящееся на 222 2886=222*13 тк 222*12=2663<2700 222*14=3108>2900 то есть k+l+m=13 по условию цифра m четная но цифра k наибольшая(тк 100k+10l+m наибольшее четное 3 значное и все цифры отличны от нуля То есть m<L<k m-четное число Положим что m=8 то L=9 9+8=17 уже больше 13 не подходит. m=6 ,то минимальная сумма m+l+k=6+7+8=21>13 невозможно m=4 минимальная сумма m+l+k=4+5+6=15>13 не подходит То есть m=2 То возможно что k+l=11 для того что бы оно было наибольшим из возможных возьмем k=9 l=2 То есть это число 922 но нельзя тк цифры повторяются тогда возьмем k=8 l=3 То число 832 ответ:832
Если рядом сидят два химика, то правый скажет правду: НЕТ. Если рядом сидят два алхимика, то правый соврет: НЕТ. Таким, образом, ответ НЕТ возникает в том случае, если рядом сидят два одинаковых человека: два химика или два алхимика. Допустим, у нас n химиков. Тогда ряд из (n+1) рядом сидящих алхимиков дает n ответов НЕТ. Ряд надо составлять из алхимиков, чтобы химиков получилось минимальное, а не максимальное количество. Пусть все химики сидят через одного с алхимиками. ХАА...АХАХА...ХА Разобьем их на пары (ХА)А...А(ХА)(ХА)...(ХА) Здесь n А подряд и n пар ХА. Всего n + n А и n Х. n + n + n = 160 3n = 160 Но 160 не делится на 3, поэтому такого не может быть. Значит, есть хотя бы одна пара Х подряд. (ХА)(ХХ)А...А(ХА)(ХА)...(ХА) Здесь 2 химика, еще (n-2) пары ХА и ряд из n А. Химиков по-прежнему n, а алхимиков n + (n-2) n + n - 2 + n = 160 3n - 2 = 160. 3n = 162 n = 54
Причем по десяткам они встречаются по 2 раза всего их 6.
Тогда если сложить все числа и отдельно по разрядам получим.
S=2*(k+l+m)*100+2*(k+l+m)*10+2(k+l+m)=(k+l+m)*(200+20+2)=222*(k+l+m)
2700<222(k+l+m)<2900
То есть сумма делится на 222
между числами 2700 и 2900 есть только 1 число делящееся на 222
2886=222*13 тк 222*12=2663<2700 222*14=3108>2900
то есть k+l+m=13
по условию цифра m четная
но цифра k наибольшая(тк 100k+10l+m наибольшее четное 3 значное и все цифры отличны от нуля
То есть m<L<k m-четное число
Положим что m=8 то L=9 9+8=17 уже больше 13 не подходит.
m=6 ,то минимальная сумма m+l+k=6+7+8=21>13 невозможно
m=4 минимальная сумма m+l+k=4+5+6=15>13 не подходит
То есть m=2
То возможно что k+l=11 для того что бы оно было наибольшим из возможных возьмем k=9 l=2
То есть это число 922 но нельзя тк цифры повторяются тогда возьмем k=8 l=3
То число 832
ответ:832