C) - 1 и 2.
Пошаговое объяснение:
2^(x-2), 2^x и 2^x² являются тремя последовательными членами геометрической прогрессии, если
(2^х)² = 2^(x-2)•2^x²
2^(2х) = 2^(х² + х - 2)
2х = х² + х - 2
х² + х - 2 - 2х = 0
х² - х - 2 = 0
D = 1+8=9
x1 = (1+3)/2 = 2;
x2 = (1-3)/2 = -1.
ответ: C) - 1 и 2.
Проаерка:
Если х = -1, то
2^(-3) = 1/8; 2^(-1) = 1/2; и 2^1 = 2.
1/8, 1/2, 2 - члены прогрессии со знаменателем q = 4, верно.
Если х = 2, то
2^0 = 1; 2^2= 4; и 2^2² = 16.
1, 4, 16 - члены прогрессии со знаменателем q = 4, верно.
1. В)-3-8;
2. -126;
3. -18.
Пошаговое объяснение:
1.
4-12+9+(...)=-10
1+ (...) = - 10
(...) = - 10 -1
(...) = - 11.
Из приведённых выражений подходит
В)-3-8 = - 11.
2. Считаю, что в условии имеется ввиду "сумма всех целых чисел от -43 до 40 включительно:
-43 + (-42) + (-41) + (-40) + + 39 + 40 = -43 + (-42) + (-41) + (-40+40) + (- 39+39) + ... + (-2+2) + (-1+2) + 0 =
-43 + (-42) + (-41) + 0 + 0 + + 0 + 0 = - 126.
3.
-7 < х < 3
Целыми решениями неравенства являются
-6; -5; -4; -3; -2; -1; 0; 1; 2.
Их сумма
-6+(-5)+(-4)+(-3)+(-2+2)+(-1+1)+0 = -6+(-5)+(-4)+(-3) = - 18.