Я полагаю, что только(x+4) в квадрате, если это так, то: -18/x^2+8x+16-10>= -> (приводим 10 к общему знаменателю с первой половиной) доставляйте сами больше или равно 0, ибо у меня подобные знаки только вас запутают, я вспомню о них в конце -> (-18/x^2+8x+16)-(10x^2+80x+160)/(x^2+8x+16) = (-18-10x^2-80x-160)/x^2+8x+16= (умножаем на -1 для удобства, при это знак меняется) -> 10x^2+80x+178/x^2+8x+16 меньше или равняется нулю. Теперь, ищем дискриминант к знаменателю, этим корням она не будет ровняться, так как делить на ноль в математике нельзя: x^2+8x+16=0 D=b^2-4ac=64-4*1*16=64-64=0 - это значит будет один корень. -b/2a= -8/2=-4. Уравнение не будет равняться -4. Теперь ищем дискриминант к числителю: 10x^2+80+178=0 D=b^2-4ac=6400-4*10*178=6400-7120=-720 - значит таких чисел, при которых уравнения меньше или равняется нулю нет.
Если вокруг трапеции АВСД описана окружность, то она равнобокая. Найдём длину боковой стороны АВ: она состоит из двух отрезков: АВ = (1/2) + (7/2) = 0,5 + 3,5 = 4. Её проекция на нижнее основание равна (7-1)/2 = 6/2 = 3. Теперь можно найти высоту H трапеции (она равна двум радиусам r вписанной окружности). H = √(4² - 3²) = √(16 - 9) = √7. Тогда r = √7/2. Так как центр описанной окружности находится на перпендикуляре из середины АВ, то этот перпендикуляр параллелен r и проходит на расстоянии 2 - 0,5 = 1,5. Эти отрезки образуют прямоугольную трапецию, Тангенс острого угла равен √7/3. Отсюда находим: R = r + 1,5/(√7/3) = (√7/2) + ((1,5*3)/√7) = (√7/2) + (4,5√7)/7) = = (7√7/14) + (9√7/14) = 16√7/14 = 8√7/7 ≈ 3,023716.
6х = 90
х = 15 - первый угол
75 - второй угол )