Ну как бы не совсем то но буквы на свои поменяй и получится
Пошаговое объяснение:
Условие
Из вершины A треугольника ABC опущены перпендикуляры AM и AP на биссектрисы внешних углов B и C.
Докажите, что отрезок PM равен половине периметра треугольника ABC.
Подсказка
Пусть прямые AM и AP пересекают прямую BC в точках K и L. Тогда отрезок KL равен половине периметра исходного треугольника, а MP – средняя линия треугольника AKL.
Решение
Пусть прямые AM и AP пересекают прямую BC в точках K и L. Поскольку высоты BM и CP треугольников ABK и ACL являются их биссектрисами, то эти треугольники равнобедренные, поэтому BK = AB и CL = AC. Значит, отрезок KL равен периметру треугольника ABC.
Высоты BM и CP равнобедренных треугольников ABK и ACL являются их медианами, поэтому точки M и P – середины отрезков AK и AL. Значит, MP – средняя линия треугольника AKL. Следовательно, отрезок MP равен половине отрезка KL, то есть половине периметра треугольника ABC.
Пошаговое объяснение:
3х/5 = 9х/15 (умножили и числитель и знаменатель на 3)
4/9 = 12/27 ( (умножили и числитель и знаменатель на 3)
Подставим это в уравнение
9х/15 + х/15 = 2/27 + 12/27
10х/15 = 14/27
2х/3 = 14/27
х = 14/27 : 2/3
х = 14/27 * 3/2
х = 14*3/27*2
х = 7/9