Самостоятельная работа по темам: «Формулы сложения. Формулы двойного угла»
Вариант 2.
Докажите тождество:
1. С использованием формул сложения:
а) sin(α+b)+sin(–α) cos(–b)=cosα sinb;
б) sin (α + b)+sin (α – b) = 2 sin α cos b;
2. С использованием формул двойного угла:
а) 1 – (sin α – cos α)2 = sin 2α;
б) 4sin α cos α cos 2α = sin 4α.
нужна, заранее благодарю!
возведем оба уравнения в квадрат
(2√x-√y)²=3²
(√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи
xy=4
4x-8+y=9
xy=4
4x+y=17
xy=4
тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение
y=17-4x
x(17-4x)=4
17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8
x1=4, x2=1/4
y1=17-16=1 y2=17-1=16
1) первое решение x=4, y=1
2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат