При решении неравенств нужно неизвестные переносить в левую часть, а все числа - в правую и далее решать методом интервалов на числовой оси. Полученные ответы:1) x принадлежит промежутку (-∞;2)2) x принадлежит промежутку (-∞, 4)3) x принадлежит промежутку (-5, ∞)4) x принадлежит промежутку (-∞, -6)Модули. Чтобы решить выражение с модулем нужно прорешать два случая - когда под модулем выражение отрицательное и когда положительное (поэтому получается два значения). Полученные ответы:1) x=-2 и x=72) x=-7,6 и x=6,43) x=-2,5 и x=7,54) x=-16 и x=45) x=-1,6 и x=4Задача. Тут все просто: нужно сложить расстояния от точки до обеих прямых: 3+1=4, одно решение.
Направление вектора в пространстве определяется углами, , которые вектор составляет с осями координат Косинусы этих углов называются направляющими косинусами вектора.
С выведенной ранее формулы (45) для проекции вектора легко получить выражения для направляющих косинусов. Пусть дан вектор . Тогда
Отсюда находим выражения для направляющих косинусов:
Так как по формуле , то
Возводя почленно каждое из равенств формул (60) в квадрат и складывая, найдем зависимость между направляющими косинусами вектора:
откуда
т. e. сумма квадратов направляющих косинусов любого вектора равна единице.
Замечание. Легко видеть, что проекции любого единичного вектора на оси координат соответственно совпадают с его направляющими косинусами и, следовательно, его разложение по осям координат имеет вид
Пример. Найти косинусы углов, которые вектор АВ составляет с осями координат, если .
Решение. Находим проекции вектора АВ на оси Ох, Оу, Oz:
По формуле (58) находим модуль вектора по формулам (60) находим направляющие косинусы вектора:
ответ на бумажке удачи