Чтобы ответить на вопрос задачи, нужно знать длины сторон основания призмы и её высоту. Объём призмы измеряют произведением её высоты на площадь основания. V=S•H⇒ Н=V:S S прямоуг. тр-ка =a•b:2, где a и b- катеты. Т.к. острые углы основания =45°, то этот треугольник - равнобедренный, второй катет равен 6 см, а гипотенуза с=√(а²+а²)=√72=6√2 S=6•6:2=18 (см²)⇒ Н==108:18=6 (см) Площадь полной поверхности призмы - сумма площадей двух оснований и площади боковой поверхности. Площадь боковой поверхности - сумма площадей боковых граней призмы. Их можно найти по отдельности или умножив высоту на периметр основания: P=(6+6+6√2)=6(2+√2) S(бок)=H*P=6•6•(2+√2)=36•(2+√2) S (полн)=2•18+36•(2+√2)=36•(3+√2)
79
Пошаговое объяснение:
79 сотен это 7900 в 1 сотне 10 дес. 7900 делим на 10 получаем 790 десятков