АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
АВСД - прямоугольник ⇒ ∠А=∠В=∠С=∠Д=90° .
Так как МА⊥ пл. АВСД ⇒ МА ⊥АВ , МА⊥АД , МА⊥АС.
Тогда треугольники АВМ , АДМ, АСМ, АДС, АДВ - прямоугольные , и к ним можно применить теорему Пифагора.
1)\; \; MB=\sqrt{AB^2+AM^2}=\sqrt{3^2+1^2}=\sqrt{10}2)\; \; MD=\sqrt{AD^2+AM^2}=\sqrt{4^2+1^2}=\sqrt{17}3)\; \; AC=\sqrt{AD^2+CD^2}=\sqrt{4^2+3^2}=54)\; \; BD=\sqrt{AD^2+AB^2}=\sqrt{4^2+3^2}=5\; ,\; \; AC=BD\; .
5)\; \; CM=\sqrt{AC^2+AM^2}=\sqrt{5^2+1^2}=\sqrt{26}6)\; \; S(MAC)=\frac{1}{2}\cdot AC\cdot AM=\frac{1}{2}\cdot 5\cdot 1=2,5
Пошаговое объяснение:
Тангенс угла наклона касательной к графику функции равен производной этой функции в точке касания.
(y = (4/x))' = -4/x². В точке х = -2 производная равна: y'(-2) = -4/4 = -1.
Угол равен arc tg(-1) = 135°.