Тело, которое получилось, имеет веретенообразную форму: два конуса с одним общим основанием,
радиус r которого - высота ВО треугольника АВС, проведенная к стороне АС, вокруг которой треугольник вращается;
образующие - АВ и ВС соответственно;
высота каждого конуса - СО и ОА, сумма которых равна АС.
Объем тела вращения равен сумме объемов конусов:
V=v₁ +v₂
v₁=Sh₁:3=πr²h₁:3
v₂=Sh₂:3=πr²h₁:3
V=πr²h₁:3+πr²h₁:3=S(h₁+h₂):3=πr²*АС:3
Радиус r основания, общего для обоих конусов, найдем из площади треугольника АВС, найденной по формуле Герона.
Вычисления банальны, приводить поэтому иx не буду.
Площадь треугольника АВС равна 84
r=ВО=2S ᐃ АВС:АС=168:21=8
V =πr²*АС:3=π*64*21:3=448π
Площадь поверхности равна сумме площадей боковой поверхности конусов:
Sт.вр.=πrL₁+πrL₂=πr(L₁+L₁)
Sт.вр.=π*8*(10+17)=216π
а.) 412 ÷ 100 = 4.12
9.5 × 4.12 = 39.14
39.14 × 2 = 78.28 л.
б.) 78.28 × 0,92 = 72,0176маната