10. Амина отнимает от числа 14 по очереди числа 3 и 8. Найдите произведение первого отрицательного числа и числа стоящего C) D) 24 E) 35 перед ним. А) -4 В) 8 C) 0 D) -2 E) -8 14. Иer УМ
) если числа с разными знаками, нужно отбольшего числа отнять меньшее и поставить знак большего
2) если числа с одинаковыми знаками, их нужно сложить, а знак поставить общий
3) при умножении и делении нужно умножать или желить как обычные числа, а знак минус поставить в том случае, если в примере имеется нечёткое количество минусов, так как если будут 2, 4, 6 и т.л. то по правилу минус на минус даёт плюс.
-(-4)+9 тут два минуса идут подрят, применяем правило парных минусов и получаем плюс: 4+9=13
-8-6 числа с одинаковыми знаками, значит складываем и ставим общий знак, тоесть минус: -8-6=-14
50+(-25) в этом случае парных минусов у нас нет, поэтому минус переходит вперёд: 50-25=25
-8+(-22)=-8-22=-30
0-8=-8
-21÷(-3) придерживаемся правило об умножении и делении.. чётное количество, значит мы делим а знак будет с плюсом: -21÷(-3)=7
36÷(-6) а тут знак с минусом, так как он один: 36÷(-6)=-6
Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения . Обратная теорема Пифагора: Для всякой тройки положительных чисел a, b и c, такой, что a^2 + b^2 = c^2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.
Обратная теорема, теорема, условием которой служит заключение исходной (прямой) теоремы, а заключением — условие. Обратной к О. т. будет исходная (прямая) теорема. Таким образом, прямая и О. т. взаимно обратны. Например, теоремы: "если два угла треугольника равны, то их биссектрисы равны" и "если две биссектрисы треугольника равны, то соответствующие им углы равны" — являются обратными друг другу. Из справедливости какой-нибудь теоремы, вообще говоря, не следует справедливость обратной к ней теоремы. Например, теорема: "если число делится на 6, то оно делится на 3" — верна, а О. т. : "если число делится на 3, то оно делится на 6" — неверна. Даже если О. т. верна, для её доказательства могут оказаться недостаточными средства, используемые при доказательстве прямой теоремы. Например, в евклидовой геометрии верны как теорема "две прямые на плоскости, имеющие общий перпендикуляр, не пересекаются", так и обратная к ней теорема "две непересекающиеся прямые на плоскости имеют общий перпендикуляр". Однако вторая (обратная) теорема основывается на евклидовой аксиоме параллельных, тогда как для доказательства первой эта аксиома не нужна. В Лобачевского геометрии вторая просто неверна, тогда как первая остаётся в силе. О. т. равносильна теореме, противоположной к прямой, т. е. теореме, в которой условие и заключение прямой теоремы заменены их отрицаниями. Поэтому прямая теорема равносильна теореме, противоположной к обратной, т. е. теореме, утверждающей, что если неверно заключение прямой теоремы, то неверно и её условие. Известный "доказательства от противного" как раз и представляет собой замену доказательства прямой теоремы доказательством теоремы, противоположной к обратной. Справедливость обеих взаимно обратных теорем означает, что выполнение условия любой из них не только достаточно, но и необходимо для справедливости заключения . Обратная теорема Пифагора: Для всякой тройки положительных чисел a, b и c, такой, что a^2 + b^2 = c^2, существует прямоугольный треугольник с катетами a и b и гипотенузой c.
) если числа с разными знаками, нужно отбольшего числа отнять меньшее и поставить знак большего
2) если числа с одинаковыми знаками, их нужно сложить, а знак поставить общий
3) при умножении и делении нужно умножать или желить как обычные числа, а знак минус поставить в том случае, если в примере имеется нечёткое количество минусов, так как если будут 2, 4, 6 и т.л. то по правилу минус на минус даёт плюс.
-(-4)+9 тут два минуса идут подрят, применяем правило парных минусов и получаем плюс: 4+9=13
-8-6 числа с одинаковыми знаками, значит складываем и ставим общий знак, тоесть минус: -8-6=-14
50+(-25) в этом случае парных минусов у нас нет, поэтому минус переходит вперёд: 50-25=25
-8+(-22)=-8-22=-30
0-8=-8
-21÷(-3) придерживаемся правило об умножении и делении.. чётное количество, значит мы делим а знак будет с плюсом: -21÷(-3)=7
36÷(-6) а тут знак с минусом, так как он один: 36÷(-6)=-6
-19÷1=-19
-6×(-12)=6×12=72
-2×7=-14
9×(-3)-7=-27-7=-34
0-(-18)=18
-9+9=0
Удачи)
Пошаговое объяснение: