Квадрат - это 2
Пошаговое объяснение:
Обозначим круг=x, квадрат=y и треугольник=z. По условию
x+y+x=y·10+z и y+z=y.
Из второго равенства получаем: z=y-y=0. Тогда первое равенство принимает вид:
x+y+x=y·10+0 или 2·x=y·10-y или 2·x=9·y или x=9·y:2.
Так как x и y цифры, то есть целые числа, то y чётное число и
0≤9·y:2≤9.
Но y - это десятичная цифра и поэтому y>0. Отсюда: y=2 или y=4 или y=6 или y=8.
Перебираем все варианты и проверим неравенство 0≤9·y:2≤9:
y=2, то x=9·2:2=9, подходит, и квадрат - это 2;
y=4, то x=9·4:2=18, не подходит;
y=6, то x=9·6:2=27, не подходит;
y=4, то x=9·8:2=36, не подходит.
разложим на множители: 12=2*2*3 и 32=2*2*2*2*2
б) 14 и 42 наибольший общий делитель 14 (14:14=1 и 42:14=3)
разложим на множители:
14=2*7 и 42=2*3*7
в) 68 и 102 наибольший делитель 34 (68:34=2 102:34=3)
разложим на множители:
68= 2*2*17 и 102=2*3*17
г) 480 и 669 наибольший общий делитель 3 (480:3=160 и 669:3=223)
разложим на множители:
480=2*2*2*2*2*3*5 669=3*223
д) 23 и 96 и 112 наибольший общий делитель для этих 3-х чисел 1 (число 23 можно разложить только на множители 1 и 23, 96 и 112 на 23 не делятся)
разложим на множители:
23=23*1 и 96=2*2*2*2*2*3 и 112=2*2*2*2*7
для чисел 96 и 112 - наибольший делитель 16 (96:16=6, 112:16=7)
е) 21 и 126 и 252 наибольший общий делитель 21 (21:21=1, 126:21=6, 252:21=12)
разложим на множители:
21=7*3 и 126=2*3*3*7 и 252=2*3*3*7