Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
Классическое определение гласит, что “два выражения, значения которых равны при любых значениях переменных, называются тождественно равными, а тождество – это равенство, верное при любых значениях переменных”. Исходя из этого определения, в приведенных выражениях определены такие тождества: 1) ab + 3c = 6) 3c + ab ( перестановка слагаемых); 2) a - b - c = 5) -1(b + c - a) = a - b - c (после раскрытия скобок); 3) 8(a + b - c) = 7) 8a + 8b - 8c = 8(a + b - c) (после вынесения за скобки общего множителя); 4) 1/4a * 4/5b * 5/6c = 8) 1/6 * a * b * c (после сокращения дробей).
Пошаговое объяснение:
2*(x-2 1/10)+4 1/5=5
2*(x-2 1/10)=5-4 1\5
2*(x-2 1/10)=4\5
х-2 1\10=4\5:2
х-2 1\10=4\5*1\2
х-2 1\10=2\5
х=2\5+2 1\10
х=4\10+2 1\10
х=2 5\10=2 1\2