Для начала распишем эти два сплава(из которого нужно получить и который нужно получить): Ι сплав: m(сплава) = 510 кг w(свинца) = 32% m(свинца) = (кг) w(меди) = 68% m(меди) = 510 - 163,2 = 346,8 (кг)
Так, как масса меди является постоянной(то есть не изменяется), то x(массу сплава, который нужно получить) считаем по ней: 346,8=0,6x ; x=578 (кг) Тогда масса свинца во втором сплаве(который нужно получить) равна 0,4 * 578 = 231,2 (кг), а к первому сплаву нужно добавить 231,2 - 163,2 = 68 (кг) свинца, чтоб получить второй.
Пусть дана трапеция ABCD, BC||AD AC=3, BD=5среднняя линия трапеции EF=2, по свойству средней линии трапецииBC+AD=2*EF=2*2=4Пусть диагонали пересекаются в точке ОПусть BC=x см, тогда AD=4-x см.Опустим высоты BK и CN (точки K и N лежат на основании AD), тогда KN=BC=xПусть AK=y, тогда DN=4-x-x-y=4-2x-yAN=x+yDK=4-x-yВысоты трапеции равны, поэтому5^2-(4-x-y)^2=3^2-(x+y)^2Сделаем заменуx+y=t25-(4-t)^2=9-t^225-16+8t-t^2=9-t^29+8t=98t=0t=0значит рисунок сделано неверно, и точка К лежит вне трапецииПусть AK=y, AD=4-x, KN=BC=x, KD=4-x+y=4-(x-y), AN=x-yтогда используя равенство высот5^2-(4-(x-y))^2=3^2-(x-y)^2Сделаем заменуk=x-y25-(4-k)^2=9-k^225-16+8k-k^2=9-k^29+8k=98k=0k=0а значит x=yзначит AN=0 и точки А и N совпдают, и диаональ АС является высотой трапецииПлощадь трапеции равна произведению средней линии трапции на ее высоту, поэтомуплощадь данной трапеции равна EF*AC=2*3=6ответ: 6
x-60 x
=
10 20-4
8x-480=5x
8x-5x=480
x=160
160-60=100
ответ: первое число 100.
второе число 160.