М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
psvelcmytin1812
psvelcmytin1812
23.03.2021 21:11 •  Математика

Решите : 1) от двух пристаней находящихся на расстоянии510 километров,плыли в 7 часов навстречу друг другукатер и моторная лодка.встреча произошла в 24 часа этого же дня.катер шел со средней скоростью 19километров в час.с какой средней скоростью шла лодка? 2) на каком друг от друга находились катер и лодка за 2 часа до втречи?

👇
Ответ:
MiLLkYWaY1
MiLLkYWaY1
23.03.2021

1)24-7=17 часов это время в пути . 
19*17=323 это путь катера. 
510-323=187 это путь лодки 
187:17=11 это скорость лодки

 

2)17-2=15ч -плыли катер и лодка до 2 часов до встречи

       15*(19+11)=450км катер и лодка за 15 часов

       510-450=60км - между катером и лодкой за 2 часа до встречи

ответ: 11км, скарость лодки, 60км между катером и лодкой за 2 часа до встречи.

 

4,7(38 оценок)
Ответ:

1)

24-7=17 часов это время в пути .

19*17=323 это путь катера.
510-323=187 это путь лодки
187:17=11 это скорость лодки

2)

19+11=30 км проплываю лодка с катером за час

30 * 2 = 60 на таком растоянии были за 2 часа до встречи

 вот и решена задача

4,4(24 оценок)
Открыть все ответы
Ответ:
0123220210
0123220210
23.03.2021

Чтобы найти сколькими нулями оканчивается произведение нужно найти сколько раз в этом произведении встречается множитель 10.

Заметим, что 10 раскладывается на простые множители как 10=2·5. Очевидно, сомножителей "2" будет больше чем сомножителей "5". Таким образом, нужно узнать число множителей "5" в произведении. Каждый такой множитель в паре с множителем "2" даст множитель "10" и соответственно дополнительный ноль на конце числа.

Найдем, сколько чисел содержит множитель "5". Всего среди первых 2020 натуральных чисел таких чисел \dfrac{2020}{5} =404, но в данном произведении отсутствуют первых три числа кратные 5 (5, 10, 15). Значит, множитель "5" содержит 404-3=401 число.

Но некоторые числа содержат не один множитель "5", а два. Найдем количество таких чисел.

Для этого разделим 2020 на 5^2:

\dfrac{2020}{5^2} =\dfrac{2020}{25} =80\dfrac{20}{25}

Значит, последнее число, которое содержит в своем составе два множителя "5" - это число 80\cdot25. Первое такое число - очевидно, 25. Значит, всего таких чисел 80.

Еще некоторые числа содержат три множителя "5". Найдем количество таких чисел. Для этого разделим 2020 на 5^3:

\dfrac{2020}{5^3} =\dfrac{2020}{125} =16\dfrac{20}{125}

Значит, последнее число, которое содержит в своем составе три множителя "5" - это число 16\cdot125. Первое такое число - 125. Значит, всего таких чисел 16.

И, наконец, некоторые числа содержат сразу четыре множителя "5". Найдем их количество. Для этого разделим 2020 на 5^4:

\dfrac{2020}{5^4} =\dfrac{2020}{625} =3\dfrac{145}{625}

Значит, последнее число, которое содержит в своем составе четыре множителя "5" - это число 3\cdot625. Первое такое число - 625. Значит, всего таких чисел 3.

Чисел, кратных 5^5=3125 среди множителей нет.

Итак, 401 число содержат в своем составе множитель "5", 80 чисел содержат второй множитель "5", 16 чисел содержит третий множитель "5" и 3 числа содержат четвертый множитель "5". Значит, всего множителей "5" имеется:

401+80+16+3=500

Значит, число 20\cdot21\cdot22\cdot...\cdot2020 оканчивается 500 нулями.

ответ: 500

4,8(32 оценок)
Ответ:
SEITZHANOFF
SEITZHANOFF
23.03.2021

Чтобы найти сколькими нулями оканчивается произведение нужно найти сколько раз в этом произведении встречается множитель 10.

Заметим, что 10 раскладывается на простые множители как 10=2·5. Очевидно, сомножителей "2" будет больше чем сомножителей "5". Таким образом, нужно узнать число множителей "5" в произведении. Каждый такой множитель в паре с множителем "2" даст множитель "10" и соответственно дополнительный ноль на конце числа.

Найдем, сколько чисел содержит множитель "5". Всего среди первых 2020 натуральных чисел таких чисел \dfrac{2020}{5} =404, но в данном произведении отсутствуют первых три числа кратные 5 (5, 10, 15). Значит, множитель "5" содержит 404-3=401 число.

Но некоторые числа содержат не один множитель "5", а два. Найдем количество таких чисел.

Для этого разделим 2020 на 5^2:

\dfrac{2020}{5^2} =\dfrac{2020}{25} =80\dfrac{20}{25}

Значит, последнее число, которое содержит в своем составе два множителя "5" - это число 80\cdot25. Первое такое число - очевидно, 25. Значит, всего таких чисел 80.

Еще некоторые числа содержат три множителя "5". Найдем количество таких чисел. Для этого разделим 2020 на 5^3:

\dfrac{2020}{5^3} =\dfrac{2020}{125} =16\dfrac{20}{125}

Значит, последнее число, которое содержит в своем составе три множителя "5" - это число 16\cdot125. Первое такое число - 125. Значит, всего таких чисел 16.

И, наконец, некоторые числа содержат сразу четыре множителя "5". Найдем их количество. Для этого разделим 2020 на 5^4:

\dfrac{2020}{5^4} =\dfrac{2020}{625} =3\dfrac{145}{625}

Значит, последнее число, которое содержит в своем составе четыре множителя "5" - это число 3\cdot625. Первое такое число - 625. Значит, всего таких чисел 3.

Чисел, кратных 5^5=3125 среди множителей нет.

Итак, 401 число содержат в своем составе множитель "5", 80 чисел содержат второй множитель "5", 16 чисел содержит третий множитель "5" и 3 числа содержат четвертый множитель "5". Значит, всего множителей "5" имеется:

401+80+16+3=500

Значит, число 20\cdot21\cdot22\cdot...\cdot2020 оканчивается 500 нулями.

ответ: 500

4,7(30 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ