1) если делитель простое число, то для деления на него необходимо. чтобы он входил в составе делителей хотя бы одного из производных. 2) если а и b при деление 1001 дают одинаковые остатки, то сумма остатков должно делится на 1001, а это не реально , т.к. сумма четное и не может равняться 2002 (остатки <1001). 3) Любое нечетное число на 24 не делится, однако один из любых трех соседних нечетных чисел делится на 3. 4) У простых чисел 2 делителей (сам число и 1), если число кратен 15, то число делителей было бы минимум 3 (1;3;5).
Х девочек всего в классе у мальчиков всего в классе 1/3 от х = х/3 девочек участвовало в конкурсе у/5 мальчиков участвовало в конкурсе (х + у) всего учеников в классе (х + у)/4 всего учеников участвовало в конкурсе Получаем уравнение х/3 + у/5 = (х + у)/4 и неравенство 30< (x + y) < 40 Решаем уравнение Приведя к общему знаменателю 60, получим 20х + 12у = 15*(х + у) 20х + 12у = 15х + 15у 20х - 15х = 15у - 12у 5х = 3у х = 3у/5 Далее решаем подбора, где у/5 - целое число При у₁ = 5 получаем х₁ = 3 , сумма 5 + 3 = 8, не удовлетворяет условию 30< (x + y) < 40 При у₂ = 10 получаем х₂ = 6 , сумма 10 + 6 = 16, не удовлетворяет условию 30< (x + y) < 40 При у₃ = 15 получаем х₃ = 9, сумма 15 + 9 = 24, не удовлетворяет условию 30< (x + y) < 40 При у₄ = 20 получаем х₄ = 12 , сумма 20 + 12 = 32, удовлетворяет условию 30< (x + y) < 40 Значит, в классе 12 девочек и 20 мальчиков 20 - 12 = 8 ответ: в классе на 8 мальчиков больше, чем девочек.
2) если а и b при деление 1001 дают одинаковые остатки, то сумма остатков должно делится на 1001, а это не реально , т.к. сумма четное и не может равняться 2002 (остатки <1001).
3) Любое нечетное число на 24 не делится, однако один из любых трех соседних нечетных чисел делится на 3.
4) У простых чисел 2 делителей (сам число и 1), если число кратен 15, то число делителей было бы минимум 3 (1;3;5).