Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
Дано: МО = ON AM = AN Найти:∠ АОN Решение. Проведя необходимые построения, мы получим равнобедренный Δ АМN, т.к. по условию АМ = AN АО - медиана ΔAMN, т.к. МО = ON по условию. По свойству равнобедренного Δ, медиана, проведенная к основанию, является также высотой ( и биссектрисой вершины.) Т.е. АО ⊥ MN, значит, ∠ АОN =∠ AOM = 90° ответ: 90°
Примечание: Если такое свойство медианы нужно доказать, то Δ AON = Δ AOM по трем сторонам (AN=AM и ON=OM по условию; AO - общая) Тогда ∠AOM = ∠AON , но они смежные. Значит, ∠AON=∠AOM = 180 : 2 = 90°
Пошаговое объяснение:
решение.
а)1414 к 14.
1414 ÷ 14 = 101.
В результате получается ответ равный 101.
б)3,75 к 5 1/3.
3,75 ÷ 5 1/3 = 375/100 ÷ 16/3 = 75/20 × 3/16 = 225/320 = 45/64.
В результате получается ответ равный 45/64.
в)8/15 к 4/15.
8/15 ÷ 4/15 = 8/15 × 15/4 = 2/1 × 1/1 = 2.
В результате получается ответ равный 2.