Обозначим скорость мотоцикла m, а скорость автомобиля а км/мин.
Длина трассы 40 км.
За 20 мин мотоцикл проехал 20m км. В этот момент выехал автомобиль.
Через 30 мин автомобиль догнал мотоцикл, проехав 30a км.
Мотоцикл к этому моменту проехал 20m + 30m = 50m км.
30a = 50m; a = 5m/3
Еще через 40 минут мотоцикл проехал 40m км, а автомобиль на 1 круг больше, то есть 40a км.
40a = 40m + 40
a = m + 1 = 5m/3
m + 1 = m + 2m/3
2m/3 = 1
m = 3/2 = 1,5 км/мин = 1,5*60 км/ч = 90 км/ч - скорость мотоцикла.
a = 5m/3 = 5*90/3 = 5*30 = 150 км/ч - скорость автомобиля.
Дано уравнение √(2x+4) = 1 - 2x.
ОДЗ: 2x + 4 ≥ 0, х ≥ -2,
1 - 2x ≥ 0, х ≤ 1/2.
Вывод: обе части его - положительны.
Левая часть - возрастающая функция, правая - убывающая.
Значит, есть одна точка пересечения, в которой справедливо равенство (если оно существует).
Возведём его в квадрат: 2x + 4 = 1 - 4x + 4x².
4x² - 6x - 3 = 0. Д = 36 + 4*4*3 = 84. √84 = 2√21.
х1 = (6 + 2√21)/8 = (3 + √21)/4 ≈ 1,89564. По ОДЗ не принимаем.
х2 = (6 - 2√21)/8 = (3 - √21)/4 ≈ -0,39564.
ответ: корень один и равен х = (3 - √21)/4 ≈ -0,39564.
ответ можно подтвердить графически: ведь корень - это точка пересечения двух графиков у = √(2x+4) и у = 1 - 2x.