М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nichisniuk2017
Nichisniuk2017
07.01.2023 18:24 •  Математика

528. Площадь прямоугольника равна 4 дм. угольника, если его ширина равна:
3
4) 1 дм
1)
2)
Дм;
Дм;
2
Дм;
5
3) 1
5
2​

👇
Открыть все ответы
Ответ:
AngelInna228322
AngelInna228322
07.01.2023

Рассмотрим произвольный ряд подряд идущих натуральных чисел: x₁, x₂,...x₁₀. Пусть сумма цифр первого числа кратна пяти, а следующее за ним число с суммой цифр кратной пяти будет число x₁ + 5 = x₆. То есть среди этой десятки чисел найдутся два с суммой цифр кратной пяти. Пусть теперь первое число не кратно пяти и равно 5x₁ + 1. Тогда первое число с суммой цифр кратной пяти будет число (5x₁ + 1) + 4= 5x₁ + 5= x₅, а второе x₁₀. Аналогично, если первое число ряда 5x₁ + 2, то первое число ряда с суммой цифр кратной пяти будет число (5x₁ + 2) + 3 = 5x₁ + 5= x₄, а второе x₉ и так далее. Таким образом, среди любых десяти подряд идущих натуральных чисел найдутся минимум два с суммой цифр кратной пяти. А это значит, что максимальное число подряд идущих чисел с суммой цифр не кратной пяти не превышает восьми. Требуемый пример легко находится: 56, 57, 58, 59, 60, 61, 62, 63.

ответ: 8.

4,8(27 оценок)
Ответ:
Anna567894
Anna567894
07.01.2023

Рассмотрим произвольный ряд подряд идущих натуральных чисел: x₁, x₂,...x₁₀. Пусть сумма цифр первого числа кратна пяти, а следующее за ним число с суммой цифр кратной пяти будет число x₁ + 5 = x₆. То есть среди этой десятки чисел найдутся два с суммой цифр кратной пяти. Пусть теперь первое число не кратно пяти и равно 5x₁ + 1. Тогда первое число с суммой цифр кратной пяти будет число (5x₁ + 1) + 4= 5x₁ + 5= x₅, а второе x₁₀. Аналогично, если первое число ряда 5x₁ + 2, то первое число ряда с суммой цифр кратной пяти будет число (5x₁ + 2) + 3 = 5x₁ + 5= x₄, а второе x₉ и так далее. Таким образом, среди любых десяти подряд идущих натуральных чисел найдутся минимум два с суммой цифр кратной пяти. А это значит, что максимальное число подряд идущих чисел с суммой цифр не кратной пяти не превышает восьми. Требуемый пример легко находится: 56, 57, 58, 59, 60, 61, 62, 63.

ответ: 8.

4,7(25 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ