Вы правы, нужно рассматривать 5 случаев. Каждый случай первоначального набора шаров происходит с вероятностью 1/5.
1) Изначально в урне 4 черных шара и 0 белых. Затем добавляют 3 белых. Найдем вероятность Р1, что все 3 вынутых шара - белые.Всего шаров 7. Вероятность, что первым вынули белый шар равна 3/7. Осталось 6 шаров, из них 2 белых. Вероятность, что второй вынутый шар белый равна 2/6, вероятность, что третий вынутый белый равна 1/5. По теореме о произведении вероятностей: Р1= 3/7 * 2/6 * 1/5 = 1/35
2) Изначально в урне 3 черных шара и 1 белый. Затем добавляют 3 белых. Найдем вероятность Р2, что все 3 вынутых шара - белые. Всего шаров 7, из них 4 белых.
Р2= 4/7 * 3/6 * 2/5 = 4/35
3) Изначально в урне 2 черных шара и 2 белых. Затем добавляют 3 белых. Найдем вероятность Р3, что все 3 вынутых шара - белые. Всего шаров 7, 5 из них - белые.
Р3= 5/7 * 4/6 * 3/5 = 2/7
4) Изначально в урне 1 черный шара и 3 белых. Затем добавляют 3 белых. Найдем вероятность Р4, что все 3 вынутых шара - белые. Всего 7 шаров, из них 6 белых.
Р4= 6/7 * 5/6 * 4/5 = 4/7
5) Изначально в урне 0 черных шара и 4 белых. Затем добавляют 3 белых. Найдем вероятность Р5, что все 3 вынутых шара - белые.
Очевидно, что вероятность равна 1. Р5=1
Найдем общую вероятность. Р=(Р1+Р2+Р3+Р4+Р5) / 5 = 2/5
Пошаговое объяснение:(y-4760)-3568 = 81598
y-4760 = 81598+3568
y-4760 = 85166
y = 85166+4760
y = 89926
55090:b+8867 = 9654
55090:b = 9654-8867
55090:b = 787
b = 55090:787
b = 70
(c+4589)-5869 = 3216
c+4589 = 3216+5869
c+4589 = 9085
c = 9085-4589
c = 4496
x:2+600 = 2110-1110
x:2+600 = 1000
x:2 = 1000-600
x:2 = 400
x = 400*2
x = 800