S=a•b
S=3•7=21см²
ответ:21см²
доказательство ниже
Пошаговое объяснение:
Можно разбить все целые числа на серии чисел по остатку от деления на 3. То есть на группы 3k, 3k+1 и 3k+2. Подставим каждую группу вместо n в исходное выражение.
1) 2*(3k)^3 + 7*(3k) + 3 = 3*(18k^3 + 7k + 1) - кратно 3.
2) 2*(3k+1)^3 + 7*(3k+1) + 3 = 2*(27k^3 + 27k^2 + 9k + 1) + 21k + 7 + 3 = 54k^3 + 54k^2 + 39k + 12 = 3*(18k^3 + 18k^2 + 13k + 4) - кратно 3.
3) 2*(3k+2)^3 + 7*(3k+2) + 3 = 2*(27k^3 + 54k^2 + 36k + 8) + 21k + 14 + 3 = 54k^3 + 108k^2 + 93k + 33 = 3*(18k^3 + 36k^2 + 31k + 11) - кратно 3.
Поскольку для каждой из серий выполняется делимость на 3, то можно заключить, что для всех целых n выражение 2n^3 + 7n + 3 кратно 3.
1.
Натуральное число делится нацело:
на 5 если его последняя цифра 0 или 5;
на 9 если сумма его цифр делится на 9.
⋮ - знак делимости нацело, например 15⋮3 - 15 кратно 3.
1) 405; 865.
2) 405 т.к. 4+5=9, 9⋮9; 972 т.к. 9+7+2=18, 18⋮9; 2394 т.к. 2+3+9+4=18.
2.
1176 = 2³·3·7²
Подробнее смотри в приложенном файле.
3.
1) 27=3³; 36=2²·3²
НОД(27, 36) = 3² = 9.
2) 168=2³·3·7; 252=2²·3²·7
НОД(168, 252) = 2²·3·7 = 4·21 = 84.
4.
1) 11; 33=11·3
НОК(11, 33) = 11·3 = 33.
2) 9=3²; 10=2·5
НОК(9, 10) = 3²·2·5 = 9·10 = 90.
3) 18=2·3²; 12=2²·3
НОК(18, 12) = 2·3²·2 = 4·9 = 36.
5.
297 = 3³·11
304 = 2⁴·19
При разложении на простые множители видно, что общих множителей нет, значит числа взаимно простые.
6.
Натуральное число делится нацело на 3 если сумма его цифр делится на 3. Пусть неизвестная цифра это х, тогда 1+9+9+x должно делится на 3, при этом x - цифра. Получаем, что при x=2: 1+9+9+2=21⋮3; при x=5: 1+9+9+5=24⋮3; при x=8: 1+9+9+8=27⋮3. Запишем варианты чисел:
1992, 1995, 1998.
7.
Найдём НОК чисел 12 и 15.
12=2²·3; 15=3·5
НОК(12, 15) = 2²·3·5 = 4·15 = 60
Получается, что фермер мог собрать 60·k кг яблок, где k - натур. числ.
Для возможной массы яблок подходит только 60·3=180кг - ответ.
Площадь квадрата: