На трёх полках стояли книги : на 2 в 2,4 раза больше чем на 1,а на 3 на 25% больше чем на 2.сколько книг было на каждой полке если всего их было 64 штуки.
Опустим из центра окружности О на хорду АВ высоту OH (она равна 12). По свойству радиуса, перпендикулярного к хорде получаем, что OH делит АВ пополам на отрезки АО=ОВ=5 см. Треугольник АНО - прямоугольный. В нём по Теореме Пифагора находим, что: АО=13 Мы нашли радиус окружности. Он равен 13. Опустим теперь из центра окружности О на хорду CD высоту ОК (она равна 5) По свойству радиуса, перпендикулярного к хорде получаем, что OK делит CD пополам. Треугольник CKО - прямоугольный. В нём по Теореме Пифагора находим, что: CK=12 тогда длина хорды CD=2*CK=2*12=24 ответ: 24
Докажем утверждение индукцией по числу n учеников в классе. Для n = 3 утверждение очевидно. Предположим, что оно верно при n ≤ N. Пусть n = N + 1. Утверждение верно, если в классе ровно один молчун. Пусть их не менее двух. Выделим молчуна A и его друзей — болтунов B1, … ,Bk. Для оставшихся n – 1 – k учеников утверждение верно, т.е. можно выделить группу M, в которой каждый болтун дружит с нечётным числом молчунов и в M входит не менее учеников. Предположим, что болтуны B1, … ,Bm дружат с нечётным числом молчунов из M, а Bm + 1, … ,Bk — с чётным числом. Тогда, если , то добавим к группе M болтунов B1, … ,Bm, а если , то добавим к группе M болтунов Bm + 1, … ,Bk и молчуна A. В обоих случаях мы получим группу учеников, удовлетворяющую условию задачи.
на первой полке х
на второй полке 2,4х
на третьей полке 2,4х+(2,4х*0,25)=3х
всего 64
составим уранение
х+2,4х+3х=64
6,4х=64
х=64:6,4
х=10 на первой полке
10*2,4=24 на второй полке
24+(24*0,25)=30 на третьей полке