М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
zologiru
zologiru
20.02.2021 06:11 •  Математика

Бабушка испекла 60 пирожков.дети съели 12 пирожков.сколько процентов пирожков осталось?

👇
Ответ:
11DarkMoon11
11DarkMoon11
20.02.2021

60-12/60=48/60 =80 процентов осталось!

4,6(79 оценок)
Открыть все ответы
Ответ:
stenolaz19
stenolaz19
20.02.2021

Пошаговое объяснение:

z = x²y - 2xy - 3x² - y² + 6x - 9y

\displaystyle \frac{\delta z}{\delta x} = 2xy-2y-6x+6

\displaystyle \frac{\delta z}{\delta y} = x^2-2x-2y-9

теперь решаем систему

\displaystyle \left \{ {{2xy-6x-2y+6 = 0} \atop {x^2-2x-2y-9 = 0 \hfill }} \right.

из второго уравнения выражаем у и подставляем в первое уравнение

у = х²/2 - х - 9/2

2x(х²/2 - х - 9/2) -6x -2(х²/2 - х - 9/2) +6 =0

x³ -3x² -13x +15 =0 ⇒x₁= -3; y₁=3;   x₂=1; y₂= -5;     x₃=5; y₃=3

мы получили три критические точки

M₁(1;-5), M₂(-3;3), M₃(5;3)

но пока не знаем, кто из них минимум, кто максимум

поэтому ищем частные производные второго порядка

\displaystyle \frac{\delta^2 z}{\delta x \delta y} =2x-2         \displaystyle \frac{\delta^2 z}{\delta x^2 } =2y-6          \displaystyle \frac{\delta^2 z}{\delta y^2 } =-2

теперь будем считать значение вторых производных в кажной точке

M₁(1;-5)

A=\displaystyle \frac{\delta^2 z}{\delta x^2 }_{(1;-5)} =-16; \quad C=\displaystyle \frac{\delta^2 z}{\delta y^2 }_{(1;-5)} =-2; \quad B=\displaystyle \frac{\delta^2 z}{\delta x \delta y}_{(1;-5)} =0

AC - B² = 32 > 0 и A < 0 , то в точке M₁(1;-5)  максимум z(1;-5) = 28

M₂(-3;3)

A=\displaystyle \frac{\delta^2 z}{\delta x^2 }_{(-3;3)} =0; \quad C=\displaystyle \frac{\delta^2 z}{\delta y^2 }_{(-3;3)} =-2; \quad B=\displaystyle \frac{\delta^2 z}{\delta x \delta y}_{(-3;-3)} =-8

AC - B² = -64 < 0, то в точке M₂(-3;3) глобального экстремума нет.

M₃(5;3)

A=\displaystyle \frac{\delta^2 z}{\delta x^2 }_{(5;3)} =0; \quad C=\displaystyle \frac{\delta^2 z}{\delta y^2 }_{(5;3)} =-2; \quad B=\displaystyle \frac{\delta^2 z}{\delta x \delta y}_{(5;-3)} =8

AC - B² = -64 < 0, то точке M₂(5;3) глобального экстремума нет.

ответ

функция имеет один экстремум

в точке M₁(1;-5) и это  максимум z(1;-5) = 28;

4,7(53 оценок)
Ответ:
Blackwolf11111
Blackwolf11111
20.02.2021
Ингредиенты Сахар 1 стакан Яйцо куриное 5 штук Мука пшеничная 1 стакан Яблоки 7 штук Сода ½ чайной ложки Масло растительное 1 столовая ложка Распечатать рецепт Инструкция 1.  Разогреть духовку. Отделить белки от желтков. Белки взбить в крепкую пену, постепенно добавляя сахар.
2.  Продолжать взбивать, добавляя по одному желтки, затем гашеную соду и муку. Тесто по консистенции должно напоминать сметану. 3.  Смазать противень растительным маслом. Вылить половину теста на противень, разложить равномерно порезанные дольками яблоки, залить второй половиной теста. 4.  Поместить противень в разогретую духовку. 3 минуты подержать на максимальной температуре, затем убавить до средней и выпекать 20-25 минут.   Это шарлотка классическая
4,5(96 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ