1. Квадраты противоположных чисел равны. Например: возьмём числа 2 и -2, которые являются противоположными. 2²=(-2)², 4=4. Так как степень чётная, равенство соблюдается.
2) Куб - степень нечётная. Возьмём те же противоположные числа 2 и -2. 2³=(-2)³, 8= -8. Равенство соблюдается.
3) Если противоположные числа возвести в равные нечётные степени, то получатся также противоположные числа. Если противоположные числа возвести в равные чётные степени, получатся равные числа.
4) Модуль не может равняться отрицательному числу. Какое бы мы число не поставили под знак модуля (отрицательное или положительное), при раскрытии модуля оно явится положительным. Возьмём опять же противоположные 2 и -2. l -2l = 2 и l2l =2.
Tgα=(0-(-6))/(3-0)=2. Теперь составим уравнение угла на уравнения с неизвестным а: пусть х=0, тогда у=4/3 (одна точка), вторая: пусть у=1, х=1/а, тогда Tgα=(4/3-1)/(0-1/а)=2 (два из значения для прямой чтобы они были параллельны).
Решаем: (4/3-1)/(0-1/а)=2
1/3=-2/а
а=-6