Так как ABCD - параллелограмм, то AD = CD. Пусть точка К - середина стороны DC. Так как по условию точка Е - середина стороны АВ, то AE = BE = DK = KC ⇒ Отрезки AK, KE и EC разбивают параллелограмм на 4 равновеликих треугольника, так как в этих треугольниках равны основания и общая высота параллелограмма. ⇒
Площадь трапеции состоит из трёх равновеликих треугольников ⇒
Точка Е - середина стороны AB ⇒ AE = BE. Площадь параллелограмма вычисляется по формуле S = b*h, что по условию S = bh = 180 Площадь трапеции равна произведению полусуммы оснований на высоту.
15/20 - (х + 1/20)=4/20
(х + 1/20/) = 15/20 - 4/20
(х + 1/20/) = 11/20
х = 11/20 - 1/20
х = 10/20
15/20 - (10/20 + 1/20/) = 4/20