Рассмотрите такое решение (для чертежа нет возможности): 1. Парабола с функцией g(x) будут пересекаться в точках (-1;1) и (1;1). 2. По условию искомая площадь расположена внутри прямой g=1 и параболы х². Поэтому она будет вычисляться из разности прямоугольника со сторонами 2х1 и площади, которая под параболой в пределах от -1 до +1. 3. Площадь фигуры можно найти из удвоенного интеграла с пределами от 0 до 1 (так как относительно оси ординат парабола х² симметрична, то же относится к прямой g=1), вместо пределов от -1 до +1:
Рассмотрите такое решение (для чертежа нет возможности): 1. Парабола с функцией g(x) будут пересекаться в точках (-1;1) и (1;1). 2. По условию искомая площадь расположена внутри прямой g=1 и параболы х². Поэтому она будет вычисляться из разности прямоугольника со сторонами 2х1 и площади, которая под параболой в пределах от -1 до +1. 3. Площадь фигуры можно найти из удвоенного интеграла с пределами от 0 до 1 (так как относительно оси ординат парабола х² симметрична, то же относится к прямой g=1), вместо пределов от -1 до +1:
y(2)=8-8+6+4=10
y'(x)=3x^2-4x+3 = 12-8+3=7
f(x)+f' (x)(x-x0 ) =10+7(x-2) =10+7x-14= 7x-4