Пошаговое объяснение:
Предположим, что все 5 чисел различны, но тогда как минимум 4 из этих сумм различны.
Например, если сложить первое число с 4-мя остальными.
Но мы имеем только 3 суммы.
То есть хотя бы одно число встречается неоднократно.
А значит в указанных суммах должны быть четные суммы ( число складывается с самим собой)
Но среди данных чисел, только число 46 является четным.
А значит среди этих чисел имеется число: 46/2 = 23
Все остальные числа отличные от 23 не могут повторятся.
Если предположить, что 23 повторяется только два раза, то поскольку остальные 3 числа различны, то число 23 дает с этими тремя различными числами еще 3 различные суммы, иначе говоря, должно быть как минимум 4 суммы, то есть мы пришли к противоречию.
Таким образом, число 23 повторяется 3 раза (если бы оно повторялось 4-5 раз, то было бы менее 3-x различных сумм)
Оставшиеся два числа найти легко:
1. 35 - 23 = 12
2. 57 - 23 = 34
Можно заметить, что 12 + 34 = 46, поэтому четвертой лишней суммы не появится.
То есть были написаны числа: 23 23 23 12 34
Ясно, что Кирилл называет число 34.
1. 13/5 + 8/5 = 21/5 = 4 1/5
2. 21/11 + 19/11 = 40/11 = 3 7/11
3. 13/8 + 17/8 + 15/8 = 45/8 = 5 4/8
4. 15/4 + 11/4 + 9/4 = 35/4 = 8 3/4