Решение задач :
Задача № 1 :
Преобразуем уравнение к следующему виду: (х – 2006)(у - 2006) = 20062.
Уравнение имеет решения, например, х = у = 4012.
Задача № 2 :
Преобразуем выражение в левой части равенства, учитывая, что α + β + γ = π,
и применяя формулы: cos2x = (1 + cos2x)/2, cosx = - cos(π - x), cosx + cosy = (2cos((x + y)/2))cos((x - y)/2),
получим справедливое тождество. Задача № 4 :
Пусть y = x2 – 3x3. Тогда y' = 2x – 9x2 и с метода интервалов получаем, что y' < 0 при всех x>2/9.
Но 1/4>2/9, следовательно, функция y(x) убывает на луче [1/4; +∞].
Это значит, что x2 - 3x3 < 1/16 - 3/64 = 1/64 < 1/64.
Задача № 5 :
Окружим каждый квадрат полоской шириной 1/2.
Образующие фигуры тоже квадраты со стороной 1 + 2 x 1/2 = 2, имеют площадь равную 4.
Их общая площадь равна 4 x 120 = 480, в то время как искомая площадь равна 500.
Следовательно, найдется точка, которая не покрыта построенными квадратами, но это значит, что она удалена от данных квадратов не меньше чем на по всем направлениям.
Круг радиуса с центром в этой точке не имеет общих точек ни с одним из квадратов.
Возьмём смешанную дробь.
Сама смешанная дробь - это дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
Например: Три целых пять седьмых.
Натуральное число - число целых, следовательно, эта смешанная дробь больше трёх, т.к. у нас есть ещё пять седьмых.
А следующее число после трёх - четыре. Но нам не хватает до четырёх ещё две седьмых. Значит, что смешанная дробь больше своей целой части, но меньше натурального числа, следующего за этой частью.
Если что-то не поняла, напиши) Постараюсь ещё чётче объяснить)