Сравним: 1 ) 20 км 010 м и 20 100 м ; 20 * 1 км + 010 м и 20 100 м ; 20 * 1000 м + 010 м и 20 100 м ; 20 000 + 010 м и 20 100 м ; 20 010 м < 20 100 м ; Значит, 20 км 010 м < 20 100 м ; 2 ) 54 т 740 кг и 5 474 ц ; 54 000 кг + 740 кг = 5 474 * 100 кг ; 54 740 кг < 547 400 кг ; Значит, 54 т 740 кг < 5 474 ц ; 3 ) 19 дм 5 см и 1 950 мм ; 19 * 10 см + 5 см и 1 950 мм ; 195 см и 1 950 мм : 1950 мм = 1 950 мм; 4 ) 3 т 2 ц и 3 200 кг ; 3 000 кг + 200 кг и 3 200 кг ; 3 200 кг = 3 200 кг ; 5 ) 8 м 1 дм и 810 дм ; 8 * 10 дм + 1 дм и 810 дм ; 81 дм < 810 дм ; 6 ) 106 ц 75 кг и 67 500 г ; 10 600 кг + 75 кг и 67 500 г ; 10 675 кг > 67 500 г.
Строишь матрицу по системе уравнений: (x, y, z написал для наглядности)..
...и вектор к нему(из результатов уравнения)
Формула для нахождения определителя методом треугольника: a₁₁*a₂₂*a₃₃ - a₁₁*a₃₂*a₂₃ - a₁₂*a₂₁*a₃₃ + a₁₂*a₃₁*a₂₃ + a₁₃*a₂₁*a₃₂ - a₁₃*a₃₁*a₂₂ (a - элемент матрицы, нижние индексы - позиция элемента в матрице).
Методом треугольника находишь определитель матрицы: ∆ = 3*(-1)*2 - 3*0*3 - 2*5*2 + 2*7*3 + 4*5*0 - 4*7*(-1) = 44 Чтобы решать дальше, определитель не должен быть равен нулю.
Заменяешь первый столбец матрицы(x), на вектор: Методом треугольника находишь определитель матрицы: ∆x = 1*(-1)*2 - 1*0*3 - 2*5*2 + 2*7*3 + (-1)*5*0 - (-1)*7*(-1) = 13
Заменяешь второй столбец матрицы(y), на вектор: Методом треугольника находишь определитель матрицы: ∆y = 3*2*2 - 3*0*(-1) - 2*1*2 + 2*7*(-1) + 4*1*0 - 4*7*2 = -62
Заменяешь третий столбец матрицы(z), на вектор: Методом треугольника находишь определитель матрицы: ∆z = 3*(-1)*(-1) - 3*2*3 - 2*5*(-1) + 2*1*3 + 4*5*2 - 4*1*(-1) = 45
Когда все определители найдены по очереди делишь определители ∆x, ∆y, ∆z на ∆(определитель первой матрицы). x = y = z =