1. обыкновенную в форме десятичной 2.лучше допиши вопрос 18 это целое число 3. 4.Дробь не изменится, потому что произойдёт сокращение дроби 5.единицы десятки сотые тысячные 6.Сравнение дробной части десятичной дроби производится по разрядам от меньшего к большему разряду. Та десятичная дробь больше (меньше), у которой величина числа в разряде больше (меньше). 7.Чтобы округлить десятичную дробь до определенного разряда целой или дробной части, все меньшие разряды заменяются нулями или отбрасываются, а предшествующий отбрасываемой при округлении цифре разряд не изменяет своей величины, если за ним идут цифры 0, 1, 2, 3, 4, и увеличивается на 1 (единицу), если идут цифры 5, 6, 7, 8, 9. 8.Умножение десятичных дробей производится так же, как и умножение натуральных чисел, по тем же правилам, но в произведении ставится запятая по сумме разрядов множителей в дробной части, считая справа налево (сумма разрядов множителей — это количество разрядов после запятой у множителей, вместе взятых). 9.нужно в этой дроби перенести запятую на столько цифр вправо, сколько нулей содержится в множителе. 10.разделить дробь на это число, не обращая внимания на запятую, поставить в частном запятую, когда закончится деление целой части 11.надо перенести запятую в этой дроби влево на столько знаков, сколько нулей в делителе 12.надо разделить числитель на знаменатель в соответствии с правилами деления 13.в множимом перенести запятую на столько знаков сколько их после запятой во множителе 14. 15.надо перенести в ней запятую на столько цифр вправо, сколько стоит нулей перед единицей в делителе (или умножить делимое и делитель на 10, 100, 1000и т.д.).
1. Если перед скобками есть знак умножения с любым положительным (которое больше 0)числом (в твоём примере 0.6×), то скобки можно раскрыть, умножая это число на каждый член в скобках, соблюдая знаки. Если перед скобками стоит умножение с отрицательным числом, например у тебя во второй части -0.5×, то при умножении каждого элемента меняется знак на противоположный. Получится: 0.6×x+0.6×7-0.5×x+0.5×3=6.8 Вообще между числом и буквой можно не писать знак умножения (×): 0.6x+0.6×7-0.5x+0.5×3=6.8 Далее выполним умножение свободных членов (без букв) 0.6x+4.2-0.5x+1.5=6.8 Теперь сделаем так, чтобы в одной части уравнения у нас остались числа с буквой, которую мы ищем, а точнее (x), а в другой части просто числа. При переносе чисел за знак равно(=), меняется знак на противоположный. 0.6x-0.5x=6.8-4.2-1.5 Считаем полученные выражения в обоих частях: 0.1x=1.1 Теперь мы можем найти (x), путём деления: x=1.1/0.1 x=11 ответ: 11 2. Аналогично раскрываем скобки и решаем. Решение на фото.
2*4<a*b<5*10
8<a*b<50
Пошаговое объяснение: это пример