22Х-3-11-2х+2,5=18х-11,5
Правильная четырехугольная пирамида .
(см²).
(см).
Найти:- сторону основания.
Решение:Площадь боковой поверхности правильной четырехугольной пирамиды можно вычислить по следующей формуле:
, где - сторона основания и - апофема (высота боковой грани, проведенная из вершины).
Попробуем выразить через (сторону основания) и (см) (высоту пирамиды).
Рассмотрим прямоугольный (где - середина ). В нем (см), а (см) (как половина стороны квадрата, равной см).
По теореме Пифагора:
Все это подставляем в уравнение площади боковой поверхности (при возведении в квадрат держим в голове, что - неотрицательное):
Пусть :
Второй корень нам не подходит по причине отрицательности. Значит:
Задача решена!
ответ: или около (см).f(0)=7,2 >0
f(1)=1-3,5-5+7,2=-0,3 <0
⇒
первый корень на [0;1]
Делим пополам
[0;0,5] и [0,5;1]
f(0,5)=0,5^4-3,5*0,5^3-5*0,5^2+7,2 >0⇒
корень на отрезке [0,5;1]
Снова делим пополам
[0,5;0,75] и [0,75;1]
f(0,75)=0,75^4-3,5*0,75^3-5*0,75^2+7,2 >0⇒
корень на отрезке [0,75;1]
Снова делим пополам
[0,75;0,875] и [0,875;1]
f(0,875)=0,875^4-3,5*0,875^3-5*0,875^2+7,2 >0⇒
корень на отрезке [0,875;1]
Снова делим пополам
[0,875;0,9375] и [0,9375;1]
f(0,9375)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 >0⇒
корень на отрезке [0,9375;1]
Снова делим пополам
[0,9375;0,96875] и [0,96875;1]
f(0,96875)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 >0⇒
корень на отрезке [0,96875;1]
Снова делим пополам
[0,96875;0,984375] и [0,984375;1]
f(0,984375)=0,9375^4-3,5*0,9375^3-5*0,9375^2+7,2 <0⇒
корень на отрезке [0,96875;0,984375]
x₁≈0,98
Аналогично,
f(4) <0
f(5) >0
второй корень на [4;5]
x₂≈4,5
Пошаговое объяснение:
на фото ................