маска-15:(15+20+40)=0,2
ромашка-20:(15+20+40)=4/15
ириска-40:75=8/15
ответ:Формулы не в КНФ:
{\displaystyle \neg (B\vee C),}{\displaystyle (A\wedge B)\vee C,}{\displaystyle A\wedge (B\vee (D\wedge E)).}
Но эти 3 формулы не в КНФ эквивалентны следующим формулам в КНФ:
{\displaystyle \neg B\wedge \neg C,}{\displaystyle (A\vee C)\wedge (B\vee C),}{\displaystyle A\wedge (B\vee D)\wedge (B\vee E).}
Пошаговое объяснение:
Конъюнкти́вная норма́льная фо́рма (КНФ) в булевой логике — нормальная форма, в которой булева формула имеет вид конъюнкции дизъюнкций литералов. Конъюнктивная нормальная форма удобна для автоматического доказательства теорем. Любая булева формула может быть приведена к КНФ.[1] Для этого можно использовать: закон двойного отрицания, закон де Моргана, дистрибутивность.
1/5 - маска
4/15-ромашка
8/15-ирисок