Если есть смешанная дробь, в дробной части которой числитель больше знаменателя (смешанная неправильная дробь), то нужно в этой дробной части числитель разделить на знаменатель нацело, с остатком. Результат от деления (частное) прибавить к целой части исходной дроби - это будет целая часть нового смешанного числа (смешанной правильной дроби). В дробной части нового смешанного числа числителем будет остаток от деления, а знаменателем - частное (знаменатель дробной части исходной смешанной дроби)
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
Существует несколько гипотез о названии Саратова, но общепринятой на данный момент нет. В недавнем считалось, что Саратов получил своё название по названию Соколовой горы, по-татарски «сары тау» — «жёлтая гора». Однако ныне эта гипотеза опровергнута, так как Соколовая гора никогда не была жёлтой, и на ней всегда рос лес.Есть предположение, что название города произошло от слов «сар атав» — «низменный остров» или «сарык атов» — «ястребиный остров». Есть предположение, что Саратов получил своё название от скифско-иранского гидронима «сарат». Существует также множество гипотез, которые находят куда меньшее подтверждение, чем вышеприведённые
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.