Количество клеток на доске 8×8 равно 64. Если удалить 1 клетку останется 63 клеток. Поэтому условие означает, что на доску 8×8 уложена 21 прямоугольников 1×3 (или 3×1).
Нам нужно вырезать клетку из доски 8×8 так, чтобы остаток можно было покрыть прямоугольников 1×3 (или 3×1).
Раскрасим доску 8×8 в 3 цвета вдоль главной диагонали так, чтобы любой прямоугольник занимал по клетке каждого цвета (см. рисунок-1). Клеток с номерами 1 – 22 штуки, с номером 2 – 21 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 1 (чтобы всех цветов осталось поровну). Такие клетки закрашены зелёным цветом (см. рисунок-2).
Раскрасим теперь доску в три цвета вдоль других диагоналей (см. рисунок-3). Клеток с номерами 1 – 21 штуки, с номером 2 – 22 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 2 (чтобы всех цветов осталось поровну). Такие клетки закрашены голубым цветом (см. рисунок-4).
Таким образом, мы можем вырезать одну из тех клеток, которая в первой раскраске имеют цвет 1, а во второй 2. Таких клеток только 4 (см. рисунок 5), которые закрашены красным цветом.
На рисунке-6 показан пример заполнения доски прямоугольниками 1×3 (или 3×1) с одной клеткой красного цвета. Примеры для остальных клеток можно получит поворотом доски.
Александр Порьфирьевич Бородин, один из ведущих русских композиторов второй половины 19-го века, кроме композиторского таланта был учёным-химиком, врачом, педагогом, критиком и обладал литературным дарованием.
Родился в Санкт-Петербурге, с детства все окружающие отмечали его необычную активность, увлекательность и в различных направлениях, в первую очередь в музыке и химии. А.П.Бородин является русским композитором-самородком, у него не было профессиональных учителей-музыкантов, все его достижения в музыке благодаря самостоятельной работе над овладением техникой ком позирования.
В конце 1870-х и в 1880-х А.П.Бородин много путешествует и гастролирует в Европе и Америке, встречается с передовыми композиторами своего времени, его известность растет, он стал одним из самых известных и популярных русских композиторов в Европе конца 19-го века.
Интересный факт: именем Бородина названа химическая реакция серебряных солей карбоновых кислот с галогенами, дающая в результате галогензамещенные углеводороды, которую он первым исследовал в 1861 году.
Количество клеток на доске 8×8 равно 64. Если удалить 1 клетку останется 63 клеток. Поэтому условие означает, что на доску 8×8 уложена 21 прямоугольников 1×3 (или 3×1).
Нам нужно вырезать клетку из доски 8×8 так, чтобы остаток можно было покрыть прямоугольников 1×3 (или 3×1).
Раскрасим доску 8×8 в 3 цвета вдоль главной диагонали так, чтобы любой прямоугольник занимал по клетке каждого цвета (см. рисунок-1). Клеток с номерами 1 – 22 штуки, с номером 2 – 21 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 1 (чтобы всех цветов осталось поровну). Такие клетки закрашены зелёным цветом (см. рисунок-2).
Раскрасим теперь доску в три цвета вдоль других диагоналей (см. рисунок-3). Клеток с номерами 1 – 21 штуки, с номером 2 – 22 штуки, с номерами 3 – 21, таким образом, чтобы разрезать доску на прямоугольников 1×3 (или 3×1), можно отрезать одну клетку цвета – 2 (чтобы всех цветов осталось поровну). Такие клетки закрашены голубым цветом (см. рисунок-4).
Таким образом, мы можем вырезать одну из тех клеток, которая в первой раскраске имеют цвет 1, а во второй 2. Таких клеток только 4 (см. рисунок 5), которые закрашены красным цветом.
На рисунке-6 показан пример заполнения доски прямоугольниками 1×3 (или 3×1) с одной клеткой красного цвета. Примеры для остальных клеток можно получит поворотом доски.