Из точки А опустим перпендикуляр к плоскости α в точку С, принадлежащую плоскости. АС и будет расстоянием от точки А до плоскости. ВС - проекция наклонной.
В прямоугольном треугольнике АВС известна гипотенуза АВ, равная 6 см, и угол В = 60 градусов. Найдем катеты.
Угол В равен 60 градусам, тогда угол А равен 30.
Катет, лежащий против угла А равен половине гипотенузы, значит
ВС = 1/2*АВ = 1/2*6 = 3 см.
По теормеме пифагора находим второй катет
АС = √ (АВ2-ВС2) = √ (36-9) = √25 = 5,
ответ: 3 см - длина проекции, 5 см - расстояние от точки А до плоскости.
Из точки А опустим перпендикуляр к плоскости α в точку С, принадлежащую плоскости. АС и будет расстоянием от точки А до плоскости. ВС - проекция наклонной.
В прямоугольном треугольнике АВС известна гипотенуза АВ, равная 6 см, и угол В = 60 градусов. Найдем катеты.
Угол В равен 60 градусам, тогда угол А равен 30.
Катет, лежащий против угла А равен половине гипотенузы, значит
ВС = 1/2*АВ = 1/2*6 = 3 см.
По теормеме пифагора находим второй катет
АС = √ (АВ2-ВС2) = √ (36-9) = √25 = 5,
ответ: 3 см - длина проекции, 5 см - расстояние от точки А до плоскости.
а)32+34+36+38=34+36+(32+38)=70+70
б)5*19*5*3*2*2=25*4*57=100*57=5700
в)47*15+53*15=47+53)*15=1500
(786+195)-586=200+195=395
Д)903-672-28=903-700=203
е)245*64-245*54=245*10=2450
в том ответе было мало решений!