1)Призма – это многогранник ( рис. 79 ), две грани которой ABCDE и abcde ( основания призмы ) – равные многоугольники с соответственно параллельными сторонами, а остальные грани ( AabB, BbcC и т. д. ) - параллелограммы, плоскости которых параллельны прямой ( Aa, или Bb, или Cc и т. д. ). Параллелограммы AabB, BbcC и т. д. называются боковыми гранями; рёбра Aa, Bb, Cc и т. д. называются боковыми рёбрами. Высота призмы – это любой перпендикуляр, опущенный из любой точки основания на плоскость другого основания. В зависимости от формы многоугольника, лежащего в основании, призма может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Если боковые рёбра призмы перпендикулярны к плоскости основания, то такая призма называется прямой; в противном случае – это наклонная призма. Если в основании прямой призмы лежит правильный многоугольник, то такая призма также называется правильной. На рис. 79 показана наклонная призма. 2)Пирамида – это многогранник, у которого одна грань ( основание пирамиды ) – это произвольный многоугольник ( ABCDE, рис. 80 ), а остальные грани ( боковые грани ) – треугольники с общей вершиной S, называемой вершиной пирамиды. Перпендикуляр SO, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. В зависимости от формы многоугольника, лежащего в основании, пирамида может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Треугольная пирамида является тетраэдром ( четырёхгранником ), четырёхугольная – пятигранником и т. д. Пирамида называется правильной, если в основании лежит правильный многоугольник, а её высота падает в центр основания. Все боковые рёбра правильной пирамиды равны; все боковые грани – равнобедренные треугольники. Высота боковой грани (SF) называется апофемой правильной пирамиды.
Если одну «восьмерку» получили по математике или физике 75 учеников, это значит, что 48+37-75=10 учеников получили «восемь» и по математике, и по физике (т.е. хотя бы по двум предметам). Аналогично 48+42-76=14 учеников получили «восемь» и по математике, и по русскому языку, 42+37-66=13 учеников получили «восемь» и по русскому языку, и по физике. Далее, так, как 4 ученика получили «восемь» по всем трем предметам, то 10-4=6 учеников получили «восемь» только по математике и по физике (только по двум предметам), 14-4=10 учеников получили «восемь» только по математике и по русскому языку, 13-4=9 учеников получили «восемь» только по русскому языку и по физике. Теперь найдем сколько учеников получили «восемь» только по математике, для этого отнимем от 48 тех, кто получил отметку по трем и двум предметам: 48-4-6-10=28 учеников. Аналогично найдем сколько учеников получили «восемь» только по физике: 37-4-6-9=18 учеников, только по русскому языку: 42-4-9-10=19 учеников. Отсюда, хотя бы одну «восемь» получили (т.е. те, кто получил по трем, двум и одному предмету) 4+6+9+10+28+18+19 = 94 ученика, только одну «восемь» (т.е. с одного предмета) получили : 28+18+19=65 учеников.
Пошаговое объяснение:
305*607=185135