М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anyaadamchuk2
anyaadamchuk2
29.01.2021 20:02 •  Математика

(6-2 4\5)*3 1\8-1 3\5:1\4
скока будет только пример

👇
Ответ:
vgrecuha6
vgrecuha6
29.01.2021

2 и 4 это 24 или 2.4 я если что ответ коменты напишу

4,7(53 оценок)
Открыть все ответы
Ответ:
WDGa5ter
WDGa5ter
29.01.2021

ответ: (2, -1, 1)

Пошаговое объяснение: Запишем систему уравнений в матричном виде.

\left[\begin{array}{cccc}3&-1&2&9\\2&3&-1&0\\2&4&3&3\end{array}\right]

Приведем к ступенчатому виду. Применяем операцию R_1=\frac{1}{3} R_1 к R_1 (к 1 строке) для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_2=-2\times R_1+R_2 к R_2 (ко 2 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\2&3&-1&0\\2&4&3&3\end{array}\right]

Применяем операцию R_3=-2\times R_1+R_3 к R_3 (к 3 строке) для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&\frac{11}{3} &-\frac{7}{3}&-6 \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_2=\frac{3}{11}R_2 к R_2 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&-\frac{1}{3} &\frac{2}{3} &3\\0&1&-\frac{7}{11} &-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_1=\frac{1}{3} R_2+R_1 к R_1 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&\frac{14}{3} &\frac{5}{3} &-3\end{array}\right]

Применяем операцию R_3=-\frac{14}{3} R_2+R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&\frac{51}{11} &\frac{51}{11} \end{array}\right]

Применяем операцию R_3=\frac{11}{51} R_3 к R_3 для того, чтобы сделать некоторые элементы строки равными 1.

\left[\begin{array}{cccc}1&0&\frac{5}{11}&\frac{27}{11} \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_1=-\frac{5}{11}R_3+R_1 к R_1 для того, чтобы сделать некоторые элементы строки равными 0.

\left[\begin{array}{cccc}1&0&0&2 \\0&1&-\frac{7}{11}&-\frac{18}{11} \\0&0&1 &1 \end{array}\right]

Применяем операцию R_2=\frac{7}{11}R_3+R_2 к R_2 для того, чтобы сделать некоторые элементы равными 0.

\left[\begin{array}{cccc}1&0&0&2\\0&1&0&-1\\0&0&1&1\end{array}\right]

Воспользуемся полученной матрицей для того, чтобы описать итоговое решение системы уравнений.

x=2

y=-1

z=1

Решением является множество упорядоченных пар, которые удовлетворяют системе.

(2, -1, 1)

4,4(75 оценок)
Ответ:
куколку
куколку
29.01.2021
Имеется ряд чисел 1+2+3…..49+50…+97+98+99+100
Как мы знаем от перестановки мест слагаемых сумма не меняется.Смотрим на особенность числового ряда: сумма начальных и конечных чисел нам дает 100, то есть 1+99=100, 2+98=100, 3+97=100 и так далее.
Из этого числового ряда выпадают числа 50 и 100 (я их выделил чуть выше
жирным). Получаем дополнительно 50+100=150 и запоминаем эту сумму.Теперь определяем, что всего количество наших сумм будет равно 49, так как мы берем из каждой половинки числового ряда по числу, а разделитель у нас число 50, чтобы у нас получилось в сумме 100.
 
Теперь считаем: 100 раз по 49 и еще у нас есть наша оставшаяся сумма в 150, которую я просил вас запомнить.

И так мы имеем выражение следующего вида: 
49*100+150 =5050
4,4(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ