М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1836294
1836294
09.01.2023 22:09 •  Математика

Теңдеуді шешіңдер
824
825


Теңдеуді шешіңдер 824 825

👇
Открыть все ответы
Ответ:
maririz405
maririz405
09.01.2023
Доказать, что (3^{n} +1)^{n}-2 делится на 3^{n} -2

====

Вспомним формулу суммы первых n членов геометрической прогрессии со знаменателем q, q\ \textgreater \ 1S= \frac{q^{n}-1 }{q-1};
Здесь мы взяли первый член равный единице и q∈N; Очевидно, что эта сумма есть целое число, иными словами q^{n}-1 делится на q-1. Пусть здесь q=3^{n}-1. Имеем:\frac{(3^{n}-1)^{n}-1 }{3^{n}-2 } число целое (*). Нам же нужно доказать, что число \frac{(3^{n}+1)^{n}-2 }{ 3^{n}-2 } целое.

Итак, раз число (*) целое, то число (3^{n} -1)^{n} дает остаток 1 от деления на число 3^{n}-2; Осталось лишь найти остаток от деления на то же число числа (3^{n} +1)^{n}. Найдем произведение этих двух чисел: (3^{n} +1)^{n}(3^{n} -1)^{n} = (3^{2n}-1)^{n} Пусть остаток от деления этого числа на число 3^{n}-2 равен x; Мы знаем, что остаток от деления числа (3^{2n}-1)^{n} на число 3^{2n}-2 равен 1. А остаток от деления числа 3^{2n}-2 на число 3^{n}-2 равен 2. Стало быть, остаток от деления числа 3^{2n}-1 на число 3^{n}-2 равен 3.
Отсюда остаток от деления числа (3^{2n}-1)^{n} на число 3^{n}-2 равен 3^{n} ; Но 3^{n} \ \textgreater \ 3^{n} -2, поэтому остаток равен 2. Мы только что нашли x. x = 2, а остаток от деления на число 3^{n}-2 числа (3^{n} -1)^{n}, как уже говорилось равен 1. Значит искомый остаток от деления на 3^{n}-2 числа (3^{n} +1)^{n} равен 2. Отсюда и следует, что (3^{n} +1)^{n}-2 делится на 3^{n} -2

Извини, что запутано :)
4,5(4 оценок)
Ответ:
osipovasashaa
osipovasashaa
09.01.2023
Не может.

Сумма цифр числа даёт такой же остаток при делении на 9, что и само число. Поскольку сумма цифр 1*1 + 2*2 + 3*3 + ... + 9*9 = 285 даёт остаток 6 при делении на 9, то и само число даёт остаток 6 при делении на 9.

Но полные квадраты могут давать только такие остатки:
– квадраты чисел вида 9k, 9k + 3, 9k + 6: остаток 0
– квадраты чисел вида 9k + 1, 9k + 8: остаток 1
– квадраты чисел вида 9k + 2, 9k + 7: остаток 4
– квадраты чисел вида 9k + 4, 9k + 5: остаток 7

Значит, исходное число не является полным квадратом.
4,4(71 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ