в результате мы имеем сторону КЛ, разделенную напополам КА=АЛ, и еще раз напополам:
КВ=ВА = 1/4 КЛ
Как известно, площадь треугольника равна половине произведения стороны на высоту, проведенную к этой стороне.
Если в треугольнике КЛМ провести высоту МС к стороне КЛ, то она же будет и высотой в треугольниках КАМ и КВМ.
Площади большого и малых треугольников тогда:
пл.КЛМ = 1/2 * КЛ * МС
пл.КАМ = 1/2 * КА * МС
пл. КВМ = 1/2 * КВ * МС
а т.к. КВ = 1/2 КА = 1/4 КЛ, то
пл. КВМ = 1/2*1/4 КЛ * МС = 1/4 * (1/2*КЛ*МС) = 1/4 пл.КЛМ
Четверть - это 25%, поэтому
ответ: площадь треугольника KBM составляет 25% от площади треугольника KLM
ABCD-Ромб
Bd=13см(меньшая диагональ)
BH=12см
Найти S
у Треугольника BDH угол H=90 градусов,BD=13,BH=12cm теперь по тиареме Пифагора:
HD=Под Корнем BD(D в квадрате)-BH(Hв квадрате)=под корнем 13в квадрате-12в квадрате=5 см
теперь 2 у трегуольника ABH Угол h=90 градусов,BH=12,AH=AD-HD=(AB-5)cm теперь по теореме пифагора
AB(B в квадрате)=AH(H в квадрате)+BH(H в квадрате)
AB(B в квадрате)=(AB-5)в квадрате+12 в квадрате
AB(B в квадрате)=AB(B в квадрате)-10AB+25+144,10AB=169
AB=16.9
и Теперь Находим площадь
S=Ab умножить на BH=16,9 умножить на 12=202,8см(см в квадрате)
S=202.8см