М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aosch2k2
aosch2k2
13.07.2021 00:21 •  Математика

Преобразовать уравнения используя второе свойство равенств и решить их и сделать проверку. 15*(e+2)/7=6*(2e+7)/7 5*(c+3)/6=8*(10-c)/6 .

👇
Ответ:
zvezda026
zvezda026
13.07.2021

  15*(e+2)/7=6*(2e+7)/7

15*(е+2)=6* (2e+7)

15е+30=12е+42

15е-12е=42-30

3е=12

е=4

 

5*(c+3)/6=8*(10-c)/6

 5*(c+3)=  8*(10-c)

5с+15=80-8с

5с+8с=80-15

13с=65

с=5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,5(4 оценок)
Открыть все ответы
Ответ:
SASHA23103
SASHA23103
13.07.2021

Найдем максимальное количество одинаковых чисел.


Рассмотрим любое число на доске. Для данной суммы числа с его последними тремя цифрами существует не более одной подобной суммы, но уже с другим числом. Иначе говоря, 1000a+100b+10c+d+[100b+10c+d]=1000m+100n+10k+l+[100n+10k+l], \;\; 0\leq b,c,d,n,k,l\leq 9, \;\;0 - имеет единственное решение для данных чисел a,b,c,d; Пусть это выполняется для чисел на доске. Теперь рассмотрим числа в тетради. Из вышесказанного следует, что эти 88 чисел можно разбить определенным образом на 44 пары, где в каждой паре будет два одинаковых числа. То есть может получиться 44 одинаковых числа. Но это с одной стороны. Рассмотрим другую сторону. Заметим, что сумма всех чисел нечетна - 999 999. Следовательно, в этой сумме есть хотя бы одно нечетное число. Взглянем на сумму числа с его тремя последними цифрами: 1000a+100b+10c+d+100b+10c+d=1000a+200b+20c+2d; Если число четное, то d - четно, значит результат делится на 4. Если d - нечетно, то результат не делится на 4. Раз существует хотя бы одно нечетное число, то рассмотрим одну из 44-ех пар, где четное и нечетное число. В самом начале мы сказали, что в 44 парах равные числа. Но из вышесказанного следует противоречие - сумма четного числа с его последними тремя цифрами не может равняться сумме некоего нечетного числа с его последними тремя цифрами, поскольку последнее не делится на 4, в отличие от четного. Это означает, что хотя бы одна пара будет содержать разные числа. То есть максимальное количество одинаковых чисел равно 44-1=43. А минимальное количество различных чисел равно 88-43 = 45. Значит всегда найдется по крайней мере 45 различных чисел.

4,4(61 оценок)
Ответ:
Lala0911
Lala0911
13.07.2021

2sin²x + sinx*cosx = 1,

sinx*cosx = 1 - 2sin²x,

Т. к. sinx*cosx ≡ (1/2)*(2*sinx*cosx) ≡ (1/2)*sin(2x),

1 - 2sin²x ≡ cos²x - sin²x ≡ cos(2x), то

имеем

(1/2)*sin(2x) = cos(2x), (*)


если cos(2x) = 0, тогда получаем (1/2)*sin(2x) = 0, и sin(2x) = 0, но это противоречит основному тригонометрическому тождеству:

cos²(2x) + sin²(2x) ≡ 1.

Поэтому cos(2x) ≠ 0, и домножим равенство (*) на 2/(cos(2x)),

получим

(1/2)*sin(2x)*2/cos(2x) = cos(2x)*2/cos(2x),

sin(2x)/cos(2x) = 2,

Т.к. sin(2x)/cos(2x)≡ tg(2x), то получаем

tg(2x) = 2.

4,5(25 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ