Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Имеем многочлен
Корнями многочлена называют корни уравнения
Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.
Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.
Выпишем все делители свободного члена:
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— неправда
Подставим в корень уравнения и получим:
— правда
Следовательно, — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на
(см. вложение).
После этого исходное уравнение можно записать разложив на множители:
Решаем второе уравнение:
Рациональные корни:
Відповідь:
Покрокове пояснення:
Спочатку вартість збільшилась на 20 відсотків(було 100%,стало 120%)
140*1.2=168 грн
Потім знизили(100-25=75)
168*0.75=126 грн
Відповідь 126 грн
140 - 100%
126 - x
x=126*100/140=90%
100-90=10
Ціна впала на 10%.