678.
Пошаговое объяснение:
Пусть 6 - цифра, стоящая в разряде сотен в первоначальном числе, b - цифра в разряде десятков, а с - цифра в разряде единиц. Само число равно 600 + 10b + c.
После того, как цифру 6 перенесли в конец числа, b становится цифрой в разделе сотен, с - в разряде десятков, 6 - цифрой в разряде единиц. Новое число равно 100b + 10c + 6.
Зная, что новое число на 108 больше первоначального, составим и решим уравнение:
(100b + 10c + 6) - (600 + 10b + c) = 108
90b + 9c - 594 = 108
90b + 9c = 594 + 108
90b + 9c = 702
10b + c = 78
b = 7; c = 8.
Первоначальное число равно 678.
Проверим полученный результат:
786 - 678 = 108, верно.
Допустим дробь 8/3 (восемь третьих). Прибавим 1. Так как 1=3, значит 8+3 и 3+3. Получится 11/6. Чтобы узнать, как изменилась дробь, надо привести ее к общему знаменателю. 8/3=16/6. 11/6 < 16/6. Получается, еси прибавить натуральное число, дробь уменьшится.