Начальный вклад был N0 = x млн руб.
В конце 1 года он пополнился на 10% и стал N1 = 1,1x млн. руб.
В конце 2 года он пополнился на 10% и стал N2 = 1,1*1,1x = 1,21x млн. руб.
В начале 3 года добавили 1 млн и стало N2 = (1,21x + 1) млн. руб.
В конце 3 года вклад пополнился на 10% и стал
N3 = 1,1*(1,21x + 1) = (1,331x + 1,1) млн. руб.
В начале 4 года добавили 1 млн и стало N3 = (1,331x + 2,1) млн руб.
В конце 4 года вклад пополнился на 10% и стал
N4 = 1,1*(1,331x + 2,1) = 1,4641x + 2,31 >= 10 млн руб.
1,4641x >= 10 - 2,31 = 7,69
x >= 7,69 / 1,4641 = 5,2523
Минимальное целое x = 6 млн руб
Число а - натуральное, то есть 1, 2, 3, ...
Попытаемся найти их общий делитель по алгоритму Евклида.
8a + 1 = (5a + 2)*1 + (3a - 1)
При a = 1/3 остаток равен 0, но нам это не подходит.
5a + 2 = (3a - 1)*1 + (2a + 3)
При а = -3/2 остаток равен 0, но нам это не подходит
3a - 1 = (2a + 3)*1 + (a - 4)
При а = 4 остаток равен 0, и нам это подходит. Тогда дробь
(5*4 + 2)/(8*4 + 1) = 22/33 = 2/3. Сократили на 11.
Пусть a =/= 4
2a + 3 = (a - 4)*1 + (a + 7)
При а = -7 остаток равен 0, но нам это не подходит.
a - 4 = (a + 7)*1 - 11
Этот остаток уже никогда не будет равен 0.
ответ: единственный случай - это а = 4, сокращаем на 11.