Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
Репостное право - КРЕПОСТНОЕ ПРАВО - форма зависимости крестьян, заключавшаяся в прикреплении их к земле и подчинении административной и судебной власти феодала. В Западной Европе в средние века на положении крепостных находились английские вилланы, каталонские ременсы, французские и итальянские сервы. В большинстве районов Италии и Франции К.п. было в основном отменено в XIII-XIV вв. В Англии и Испании оно исчезло почти полностью к началу XVI в. Однако отдельные пережитки крепостничества в Италии и Франции сохранились до конца XVIII в., а в Испании - до начала XX в. В Центральной и Восточной Европе после начавшегося было в XV в. падения К.п. произошло его восстановление, причем в наиболее суровых формах, напоминавших рабство: здесь К.п. отменено в ходе буржуазных реформ конца XVIII-XIX вв. В Чехии, Венгрии и других австрийских владениях К.п. отменено в 1780-х гг. Окончательно К.п. в Пруссии. Баварии и других германских государствах пало под натиском революции 1848 г. В Русском государстве К.п. оформлялось Судебником 1497 г.. указами о заповедных летах и урочных летах и окончательно - Соборным уложением 1649 г. В XVII-XVIII вв. все несвободное население слилось в крепостное крестьянство. Отменено крестьянской реформой 1861 г. Поскольку пережитки крепостной зависимости нередко встречались (и встречаются) еще в XX в.. на борьбу с ними направлен целый ряд международно-правовых документов. Среди них Конвенция 1926 г. о рабстве. Конвенции 1930 г. о принудительном труде, Дополнительная конвенция 1956 г. об упразднении рабства,работорговли и институтов и обычаев, сходных с рабством.
Пошаговое объяснение:
Интегрирование по частям
Пусть U(x) и V(x) - дифференцируемые функции. Тогда d(U(x)V(x)) = U(x)dV(x) + V(x)dU(x). Поэтому U(x)dV(x) = d(U(x)V(x)) – V(x)dU(x). Вычисляя интеграл от обеих частей последнего равенства, с учетом того, что ∫d(U(x)V(x))=U(x)V(x)+C, получаем соотношение
Интегрирование по частям
называемое формулой интегрирования по частям. Понимают его в том смысле, что множество первообразных, стоящее в левой части, совпадает со множеством первообразных, получаемых по правой части.
Решение онлайн
Видеоинструкция
С данного онлайн-калькулятора можно вычислять интегралы по частям. Решение сохраняется в формате Word.
infinity
∫
pi
1/2*(x+1)*exp(x)
? dx
ДалееТакже рекомендуется изучить сервис вычисление интегралов онлайн
Применение метода интегрирования по частям
В связи с особенностями нахождения определенных величин, формулу интегрирования по частям очень часто используют в следующих задачах:
Математическое ожидание непрерывной случайной величины. Формула для нахождения математического ожидания и дисперсии непрерывной случайной величины включает в себя два сомножителя: функцию полинома от x и плотность распределения f(x).
Разложение в ряд Фурье. При разложении необходимо определять коэффициенты, которые находятся интегрированием от произведения функции f(x) и тригонометрической функции cos(x) или sin(x).
Типовые разложения по частям
Вид интеграла Разложения на части
∫Pn(x)cos(ax)dx, ∫Pn(x)sin(ax)dx, ∫Pn(x)eaxdx, где Pn(x) - некоторый полином (многочлен) степени n U(x)=Pn(x), dV(x)=cos(ax)dx
∫ln(P(x))dx U=ln(P(x)); dV=dx
∫arcsin(ax)dx U=arcsin(ax); dV=dx
U=ln(x); dV=dx/x
При использовании формулы интегрирования по частям нужно удачно выбрать U и dV, чтобы интеграл, полученный в правой части формулы находился легче. Положим в первом примере U=ex, dV=xdx. Тогда dU=exdx, и Вряд ли интеграл ∫x2exdx можно считать проще исходного.
Иногда требуется применить формулу интегрирования по частям несколько раз, например, при вычислении интеграла ∫x2sin(x)dx.
Интегралы ∫eaxcos(bx)dx и ∫eaxsin(bx)dx называются циклическими и вычисляются с использованием формулы интегрирования по частям два раза.
ПРИМЕР №1. Вычислить ∫xexdx.
Положим U=x, dV=exdx. Тогда dU=dx, V=ex. Поэтому ∫xexdx=xex-∫exdx=xex-ex+C.
ПРИМЕР №2. Вычислить ∫xcos(x)dx.
Полагаем U=x, dV=cos(x)dx. Тогда dU=dx, V=sin(x) и ∫xcos(x)dx=xsin(x) - ∫sin(x)dx = xsin(x)+cos(x)+C
ПРИМЕР №3. ∫(3x+4)cos(x)dx