Так так.. 1) y'=3x^2 - 3; y'=0 при 3x^2 - 3 = 0 => => 3x^2=3; x^2=1; x=+-1; Производная y' - есть скорость изменения функции y => => при положительных значениях y' y возрастает, при отрицательных убывает. y' = 0 - критическая точка функции (то есть функция в этой точке "перегибается"). На промежутке от -бесконечности до -1 (это значения х) производная больше нуля (y'(-2) = 3 * 4 - 3 = 9), то есть изначальная функция возрастает. На промежутке от -1 до 1 y' < 0 (y'(0) = -3) => y убывает. Ну и от 1 до +бесконечности y' > 0 (y'(2) = 9) => y возрастает. Чтобы начертить график этой функции надо еще знать координаты точек перегиба: y(-1) = -1+3-5 = -3 y(1) = 1 - 3 - 5 = -7 На счет исследовать - промежутки возрастания, убывания известны, кажется еще промежутки знакопостоянства нужны. Решим ур-е: x^3 - 3x - 5 = 0; По формуле Кардано: Q = (-3/3)^3 + (-5/2)^2 = -1 + 25/4 = 21/4 = 5 1/4 α = (5/2 + sqrt(21/4))^1/3; β = (5/2 - sqrt(21/4))^1/3; x = α + β = (5/2 + sqrt(21/4))^1/3 + (5/2 - sqrt(21/4))^1/3 = (2.5 + 2.29)^1/3 + + (2.5 - 2.29)^1/3 = 1.686 + 0.6 = 2.286; Это точка пересечения с ОХ, до нее функция возрастает, значит от -бесконечности до 2.286 y<0, от 2.286 до +бесконечности y>0
Відповідь:
13 сентября Юра дорешает все задачи в учебнике.
Покрокове пояснення:
7 сентября Юра решил Х задач, 8 сентября - ( Х - 1 ), 9 сентября - ( Х - 2 ).
За три дня Юра решил Х + ( Х - 1 ) + ( Х - 2 ) = 3Х - 3 = 91 - 46 = 45 задач.
Х = 16 задач - Юра решил 7 сентября, ( Х - 1 ) = 15 задач - Юра решил 8 сентября, ( Х - 2 ) = 14 задач - Юра решил 9 сентября.
10 сентября Юра решит 14 - 1 = 13 задач и останется решить 46 - 13 = 33 задачи.
11 сентября Юра решит 13 - 1 = 12 задач и останется решить 33 - 12 = 21 задачу.
12 сентября Юра решит 12 - 1 = 11 задач и останется решить 21 - 11 = 10 задач.
13 сентября Юра решит 11 - 1 = 10 задач и останется решить 10 - 11 = 0 задач - все задачи решены.