Синусо́ида — плоская кривая, задаваемая в прямоугольных координатах уравнением
Графики тригонометрических функций y(x) = sin(x) и y(x) = cos(x) на декартовой плоскости являются синусоидами.
{\displaystyle y=a+b\sin(cx+d).}y=a+b\sin(cx+d).
График уравнения [косинусоиды] вида
{\displaystyle y=a+b\cos(cx+d),}y=a+b\cos(cx+d),
также зачастую называется синусоидой. Данный график получается из синусоидального сдвигом на {\displaystyle \pi /2}\pi /2 в отрицательном направлении оси абсцисс. Термин «косинусоида» практически отсутствует в официальной литературе, поскольку является излишним.
В приведённых формулах a, b, c, d — постоянные;
a характеризует сдвиг графика по оси Oy. Чем больше a, тем выше поднимается график;
b характеризует растяжение графика по оси Oy. Чем больше увеличивается b, тем сильнее возрастает амплитуда колебаний;
с характеризует растяжение графика по оси Ox. При увеличении c частота колебаний повышается ;
d характеризует сдвиг графика по оси Ox. При увеличении d график двигается в отрицательном направлении оси абсцисс.
Синусоидальное изменение какой-либо величины называется гармоническим колебанием. Примерами могут являться любые колебательные процессы начиная от качания маятника и кончая звуковыми волнами (гармонические колебания воздуха) — колебания напряжения в электрической сети переменного тока, изменение тока и напряжения в колебательном контуре и др. Также синусоида — проекция на плоскость винтовой линии, например, скрученного провода; рулон бумаги разрезанный наискось (косо усечённый цилиндр) и развернутый — край бумаги оказывается разрезанным по синусоиде.
Синусоида была впервые рассмотрена Робервалем в 1634 году. При вычислении площади под графиком циклоиды он рассмотрел вс кривую, образуемую проекциями точки окружности, катящейся по прямой, на вертикальный диаметр этой окружности. Роберваль назвал эту кривую «спутницей циклоиды»; позднее Оноре Фабри стал называть её «линией синусов».[1]
Синусоида может пересекать прямую в бесконечном числе точек (например, график функции {\displaystyle y=\sin x}y=\sin x пересекает прямую {\displaystyle y=0}y=0 в точках с координатами {\displaystyle (\pi k,0);k\in \mathbb {Z} }(\pi k,0);k\in {\mathbb Z}). Из теоремы Безу следует, что любая кривая с таким свойством является трансцендентной.
Задача 1. В классе Одна четвертая школьников составляют отличники. Какую часть составляют остальные? Сделать графическое описание задачи. Рисунок может быть любым.
Решение
Если Одна четвертая составляют отличники, то три четвёртых составляют остальные
отличники и остальные разделенные на четыре части
Задача 2. В классе одна шестая школьников составляют отличники, составляют хорошисты, две шестых составляют троечники. Сделать графическое описание задачи. Рисунок может быть любым.
отличники хорошисты и троечники разделенные на шесть частей
Задача 3. В классе 24 школьника. одна шестая школьников составляют отличники, составляют хорошисты, две шестых составляют троечники. Сколько в классе отличников, хорошистов и троечников?
Решение
24 : 6 × 1 = 4 × 1 = 4 (отличника)
24 : 6 × 3 = 4 × 3 = 12 (хорошистов)
24 : 6 × 2 = 4 × 2 = 8 (троечников)
Проверка
4 + 12 + 8 = 24 (школьника)
24 = 24
Задача 4. В классе одна шестая школьников составляют отличники, составляют хорошисты. Какую часть составляют троечники?
Решение
Школьники разделены на 6 частей. На одну из частей приходятся отличники, на три части — хорошисты. Нетрудно догадаться, что на остальные две части приходятся троечники. Значит две шестых школьников составляют троечники
отличники хорошисты и троечники разделенные на шесть частей
Не приводя рисунков можно сложить дроби одна шестая и , и полученный результат вычесть из дроби шесть шестых, которая выражает всю часть школьников. Другими словами, сложить отличников и хорошистов, затем вычесть этих отличников и хорошистов из общего количества школьников
сложение отличников и хорошистов и вычитание их из общего числа
: